Skip Nav Destination
Close Modal
By
Egbert Baake
By
Kanchan M. Kelkar, Suhas V. Patankar, Alec Mitchell, Ramesh S. Minisandram, Ashish D. Patel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6
Vacuum arc remelting
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Components, Design, and Operation of Vacuum Induction Crucible Furnaces
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005900
EISBN: 978-1-62708-167-2
Abstract
This article discusses the principle, coil design, types and operation of a vacuum induction furnace. It describes the operation parameters that should be considered during the functioning of the induction furnace.
Book Chapter
Computational Analysis of the Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) Processes
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005510
EISBN: 978-1-62708-197-9
Abstract
This article provides an overview of the studies on computational modeling of the vacuum arc remelting (VAR) and electroslag remelting (ESR) processes. These models involve the axisymmetric analysis of the electromagnetic, flow, heat-transfer, and phase-change phenomena to predict the pool shape and thermal history of an ingot using two-dimensional axisymmetric models for VAR and ESR. Analysis of segregation of alloying elements during solidification that gives rise to macrolevel compositional nonuniformity in titanium alloy ingots is also described. The article discusses the important features of the control-volume-based computational method to review the unique aspects of the processes. Measurement of the properties of alloys and slags is explained and an analysis of the process variants for improving the predictive accuracy of the models is presented.
Book Chapter
Vacuum Arc Remelting
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005202
EISBN: 978-1-62708-187-0
Abstract
The vacuum arc remelting (VAR) process is widely used to improve the cleanliness and refine the structure of standard air melted or vacuum induction melted (VIM) ingots. It is also used in the triplex production of superalloys. This article illustrates the VAR process and the capabilities and variables of the process. It also presents a discussion on the melt solidification, resulting structure, and ingot defects. The article concludes with a discussion on the VAR process of superalloy and titanium and titanium alloy.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005203
EISBN: 978-1-62708-187-0
Abstract
Skull melting refers to the use of furnaces with water-cooled crucibles that freeze a solid “skull” of material on the crucible wall. This article describes the basic components, operating pressure, advantages, and applications of vacuum arc and induction skull melting furnaces.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
Abstract
Plasma melting is a material-processing technique in which the heat of thermal plasma is used to melt a material. This article discusses two typical design principles of plasma torches in the transferred mode: the tungsten tip design and the hollow copper electrode design. It describes the sources of atmospheric contamination in plasma melting furnaces and their control measures. The equipment used in plasma melting furnaces are also discussed. The article provides a detailed discussion on various plasma melting processes, such as plasma consolidation, plasma arc remelting, plasma cold hearth melting, and plasma casting.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
Abstract
This article reviews the bulk deformation processes for various aluminide and silicide intermetallic alloys with emphasis on the gamma titanium aluminide alloys. It summarizes the understanding of microstructure evolution and fracture behavior during thermomechanical processing of the gamma aluminides with particular reference to production scaleable techniques, including vacuum arc and cold-hearth melting, isothermal forging, conventional hot forging, and extrusion. The selection and design of manufacturing methods, in the context of processing-cost trade-offs for gamma titanium aluminide alloys, are also discussed.