Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 71
Induction melting
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006329
EISBN: 978-1-62708-179-5
Abstract
Foundry practices critical to the production of cast irons include melting, alloying, molten metal treatment, pouring, and the design of feeding systems (gating and risering) to allow proper filling of the casting mold. This article reviews these production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the castability factors, such as fluidity, shrinkage, and resistance, of gray iron. Typical cupola charge compositions and the final analyses for class 30 and class 40 gray iron castings are presented in a table. The article describes the induction melting and arc furnace melting used in gray iron foundries. It also reviews the inoculation methods such as stream inoculation and mold inoculation, of gray iron.
Book Chapter
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005834
EISBN: 978-1-62708-167-2
Abstract
Electromagnetic induction is a way to heat electrically conductive materials such as metals. This article provides a brief history of electromagnetic induction and the development of induction heating technology. It explores various applications such as heating prior to metalworking, heat treating, melting, joining (welding, brazing/soldering, and shrink fitting), coating, paint curing, adhesive bonding, and zone refining of semiconductors. The article also discusses the advantages of induction heating.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005849
EISBN: 978-1-62708-167-2
Abstract
The handling of billets or bars is an essential part of an induction heating system. This article describes two types of handling systems available for bar heating lines: inclined ramps with escapement, and sling feeder with inclined ramp and escapement. It focuses on the various infeed billet handling systems such as bin tippers, elevator feeders, rotary feeders, vibratory bowl feeders, magazine loaders, and rod feeders. The article provides information on the main categories of billet feeding systems, namely, dual pinch roll drive assemblies, tractor drive assemblies, billet pusher systems, walking beam assemblies, and index/continuous conveyor systems. It also discussed the hot billet handling systems used to deliver heated billets to the forging cell. These methods include billet extractor conveyors, accept/reject systems with pyrometer measurements, extractor rolls, discharge chutes, pinch roll extractors, pick-n-place systems, and robots.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005850
EISBN: 978-1-62708-167-2
Abstract
Hardness testing equipment is important as all results from the induction equipment are graded by the hardness testing equipment. This article includes maintenance tips and points to consider regarding hardness test equipment, power supplies, controls, programmable logic controllers, computer systems, water cooling systems, fixtures and machines, air-operated or pneumatic devices, coils, and quench systems. It also presents simple rules that need to be applied while moving the equipment from one location to another.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005835
EISBN: 978-1-62708-167-2
Abstract
Induction heating is a combination of several interrelated physical phenomena, including heat transfer, electromagnetics, and metallurgy. This article presents a brief review of different heat transfer modes, namely, heat conduction, thermal radiation, and convection. It focuses on the specifics of induction heating and heat treating applications. The article discusses the nonlinear and interrelated nature of a particular heat transfer phenomenon, physical property, and skin effect. It also presents simple case studies and general physical laws governing different heat transfer modes. The article also discusses the basic concepts of direct current and alternating current circuits, and reviews the theory of electromagnetic fields.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005871
EISBN: 978-1-62708-167-2
Abstract
Induction hardening involves multiple processing steps of heating and quenching which presents opportunity for errors and defects. This article discusses the common problems associated with induction hardening of shafts as well as the methods to diagnose, inspect, and prevent them. In addition to the major defects such as laps and seams that remain after induction hardening, microstructural transformation, decarburization, residual stress, and grain size, as well as variations in carbon content, composition, or microstructure can also affect the hardened part.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005856
EISBN: 978-1-62708-167-2
Abstract
This article focuses on the process design set-up procedure for brazing and soldering. It provides a detailed account of the types of base metals that can be joined by these processes, and reviews the factors to be considered to enhance the joint design. Criteria for selection of the right induction heating equipment to carry out the brazing or soldering operation are also provided. The article describes the types of brazing filler metals and joint designs. It also presents the types of inspection methods, namely, mechanical and visual, used to determine the quality of the brazed joint. Important considerations for the automation of induction-heated brazing applications are also discussed. The article concludes by emphasizing the need for documenting an in-control process which is a vitally important reference for questions or problems arising in the machine settings or part quality.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005841
EISBN: 978-1-62708-167-2
Abstract
Inductors used for brazing can be machined from solid copper shapes or fabricated out of copper tubing, depending on the size and complexity of the braze joint geometry to be heated. This article provides information on inductors (coils) that are generally classified as solenoid, channel (slot), pancake, hairpin, butterfly, split-return, or internal coils. It discusses the variables pertinent to the design of inductors for brazing, soldering, or heat treating. The article presents various considerations for designing inductors for brazing of dissimilar materials that present a unique challenge in the field of induction brazing.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005836
EISBN: 978-1-62708-167-2
Abstract
This article reviews the performance of power electronics components, namely, power rectifiers, insulated-gate bipolar transistors, metal-oxide semiconductor field-effect transistors, diodes, and silicon-controlled rectifiers. It provides information on induction heating power supplies with multiple heat stations, such as switching units and multiple (zone) outputs. The article describes power supply operational control and power supply protection circuits. It details duty cycle, power factor, and harmonics of power supplies. The article also describes system parameters, software analysis-calculations, human analysis-decisions, multiple system arrangements, and zone control systems for power supply selection. It provides information on the maintenance of induction power supplies, detailing the safety precautions to be taken and the need for routine inspection and servicing.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005851
EISBN: 978-1-62708-167-2
Abstract
Cooling towers are designed to remove heat from water in an induction system and dissipate it into the atmosphere. This article provides information on closed-loop recirculating water systems of an induction system to cool the power supply. It focuses on various types of cooling towers, namely, air-cooled heat exchangers, air-cooled heat exchangers with trim cooler, closed-circuit evaporative cooling towers, and open evaporative cooling towers. The article discusses the importance of their placement or positioning to reduce the chances of air recirculation, and concludes with a discussion on refrigerant chillers.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005905
EISBN: 978-1-62708-167-2
Abstract
Crucible furnaces, as compared to electric arc furnaces, are increasingly deployed in various melting practices due to their environmental and workplace friendliness and their process benefits. This article focuses on the application of induction crucible furnaces for melting and pouring operations in small-and medium-sized steel foundries, including aluminum, copper, and zinc industries. It also provides information on the process engineering benefits of melting and pouring operations.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005898
EISBN: 978-1-62708-167-2
Abstract
This article focuses on the basic turbulent flow, and the thermal, mass-transfer, and hydrodynamic phenomena for use in modeling physical processes during induction melting. It provides a discussion on transport phenomena equations that includes the approximation of convective terms in the transport equation and computational schemes for the fluid dynamics equation. The aspects of computational algorithms for specific magnetohydrodynamic problems with mutual influence of the magnetic field and melt flow due to the changing shape of the free surface are also considered. The article illustrates the application of the basic equations and approaches formulated for electromagnetic field and melt turbulent flow for the numerical study of an induction crucible furnace.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005891
EISBN: 978-1-62708-167-2
Abstract
Induction heating has the ability to concentrate the electromagnetic field and heat within a certain area of the workpiece. This article provides a detailed discussion on the end heating of bars, rods, and billets using solenoid inductors, oval inductors, and channel inductors. It reviews the importance of computer modeling in predicting the impact of different, interrelated, and nonlinear factors on the transitional and final thermal conditions of billets and bars. The article describes the most appropriate processes to improve end heating process effectiveness. Induction bending of narrow circumferential band of pipe or tube is also discussed. The article concludes with a discussion on stress relieving of pipe ends and welded areas.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005857
EISBN: 978-1-62708-167-2
Abstract
Inspection involves two types of testing, namely, destructive and non-destructive. This article provides an overview of the various inspection plans, such as first-article inspection and periodic tests done by destructive metallurgical testing and the final inspection done by the application of non-destructive technology. It describes the processes involved in destructive methods, such as surface hardness measurement, induction hardening pattern and heat-affected zone inspection, and the examination of microstructure before and after induction hardening. It also discusses non-destructive evaluation techniques for defect detection and microstructure characterization as well as non-destructive evaluation for real-time monitoring of induction process.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005852
EISBN: 978-1-62708-167-2
Abstract
The basic elements of control design are safety, process control, process verification, machine control, productivity, repeatability, and ease of setup. Effective systems of quality control/quality assurance are essential for heat treating practices. This article provides information on process control modes, as well as on process signatures of some items that require control, monitoring, verifying, and logging methods. It provides information on programmable logic controllers that have become efficient in machine control and monitoring. The article describes possible noise issues, National Electric Code clearance requirements, monitoring requirements, and machine accuracy that need to be considered when designing induction equipment.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005907
EISBN: 978-1-62708-167-2
Abstract
This article provides an overview of the models of two induction heating devices, namely, induction crucible furnace (ICF) and induction furnace with slits, or segmented and water-cooled induction furnace with cold crucible (IFCC). These devices are used for melting with skull formation of low-conductivity materials such as glasses and oxides. The article presents the governing equations and boundary conditions for ICF and IFCC modeling. It includes a discussion on three electromagnetic field models in IFCC, namely, two-dimensional (2-D), quasi-three-dimensional, and three-dimensional (3-D) models. The article provides information on the simulation of skull formation in IFCC, and elucidates the transient axisymmetrical 2-D model and the transient 3-D model, including the primary results achieved for both glasses and skull formation.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005858
EISBN: 978-1-62708-167-2
Abstract
This article provides an overview of electromagnetic fields (EMFs) and discusses their direct and indirect effects on human health. It provides a detailed description of the exposure levels of EMFs in residential and work environments. The article examines the international and European standards and regulations regarding occupational exposure to EMFs encountered in industrial activities. It discusses the categories of work equipment or activities that may expose the worker above and under the orientation value. The article also describes the main principles underlying the protection system adopted for the frequency range of 50 Hz to 10 MHz.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005853
EISBN: 978-1-62708-167-2
Abstract
This article provides an overview of the basic theory of infrared (IR), including emissivity and E slope. It explains how the IR thermometer works, and provides guidance on choosing a thermometer, in particular, deciding between a two-color and a single-wavelength thermometer and installing and maintaining them. The article discusses typical applications of induction heating, and describes how the IR thermometer controls the temperature. While the majority of the article discusses spot thermometers, thermal imagers, which are fast and are used for both research and control of the induction process, are also addressed.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005854
EISBN: 978-1-62708-167-2
Abstract
Induction heating system control is straightforward after the design and application of the coil and power supply required for the job. This article provides an overview of the basic components of an induction heating system, including a machine controller (computer or programmable logic controller), interface wiring, an operator interface, and safety controls. It also provides information on programming devices and temperature controllers, such as manual, auto, and auto-manual temperature controllers.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005842
EISBN: 978-1-62708-167-2
Abstract
This article focuses on the frequently encountered causes of induction coil failures and typical failure modes in fabrication of hardening inductors, tooth-by-tooth gear-hardening inductors, clamshell inductors, contactless inductors, split-return inductors, butterfly inductors, and inductors for heating internal surfaces. It discusses the current density distribution and the skin effect, the proximity effect, and crack-propagation specifics. The article also describes selected properties of copper alloys, the electromagnetic edge effect of coil copper turn, and the effect of magnetic flux concentrators on coil life. It also reviews the importance of having appropriate and reliable electrical contacts.