Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Cold rolling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006422
EISBN: 978-1-62708-192-4
Abstract
Rolling is the process of reducing the thickness or changing the cross section of a workpiece by compressive forces applied through a set of rolls. This article emphasizes flat rolling and illustrates basic flat-rolling process used to reduce the thickness of a rectangular cross section. It provides a discussion on hot rolling, cold rolling, and warm rolling, as well as lubrication in rolling. The article reviews the lubrication for iron-base and nickel-base materials, light metals, copper-base alloys, and titanium alloys. It discusses the wear mechanism in rolling: abrasion, adhesion, and fatigue, as well as oxidative and corrosive wear. Surface modification techniques, such as hardening by induction heat treating, weld overlay, thermal spray coating, coating via physical vapor deposition (PVD), and laser surface treatment, are also discussed for improving roll service life.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004029
EISBN: 978-1-62708-185-6
Abstract
The processing of steel involves five distinct sets of texture development mechanisms, namely, austenite deformation, austenite recrystallization, gamma-to-alpha transformation, ferrite deformation, and static recrystallization during annealing after cold rolling. This article provides an introduction on crystallographic textures. It discusses the effects of austenite rolling and recrystallization on the texture and transformation behavior of recrystallized austenite and deformed austenite. The article illustrates the overall summary of the rolling and transformation behavior. It details cold-rolling textures, annealing textures, and recrystallization textures of steel samples. The article concludes with a summary of texture development during cold rolling and annealing.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001007
EISBN: 978-1-62708-161-0
Abstract
This article describes ironmaking and steelmaking practices (melt or liquid processing, including hot metal desulfurization) and discusses the evolution of these processes and their effects on steel properties. The physical chemistry of steelmaking may appear deceptively simple for integrated steel mill operations where ore from the ground is converted into steel. The various refining steps that occur in steelmaking are reviewed. The article also describes solid processing of steel, with emphasis on hot and cold rolling, thermomechanical processing, and annealing of flat steel products.