Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9
Powder forging
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006497
EISBN: 978-1-62708-207-5
Abstract
Aluminum powders can be formed into components by several competing technologies, including powder metallurgy (PM), metal injection molding, powder forging, and additive manufacturing. This article explores PM methodologies that are being exploited to manufacture such components. It reviews emerging technologies that promise to offer exciting ways to produce aluminum parts. The article discusses the various steps involved in PM, such as powder production, compaction, sintering, repressing, and heat treatment. It provides information on aluminum production statistics and the wear-resistance applications of PM.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006112
EISBN: 978-1-62708-175-7
Abstract
Powder forging is a process in which unsintered, presintered, and sintered powder metallurgy preforms are hot formed in confined dies. This article provides information on the basic forms of powder forging and describes the material considerations, process considerations, and mechanical properties of powder forged (PF) steels. It reviews the parameters involved in quality assurance tests for PF parts. The article includes examples of PF components and highlights the reasons for selecting them over those made by competing forming methods.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006019
EISBN: 978-1-62708-175-7
Abstract
The organizations that are most active in the development of standards for powder metallurgy (PM) are the American Society for Testing and Materials (ASTM), Metal Powder Industries Federation (MPIF), and International Standards Organization (ISO). This article presents the test method standards, materials standards, and material designation codes for PM materials. It provides information on the codes for structural parts, PM soft magnetic materials, PM self-lubricating bearings, metal injection molded materials, and powder forged materials.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006080
EISBN: 978-1-62708-175-7
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005971
EISBN: 978-1-62708-168-9
Abstract
Powder metallurgy (PM) processes include press and sinter hardening, metal injection molding, powder forging, hot isostatic pressing, powder rolling, and spray forming. This article provides an overview of PM processing methods and general considerations of heat treatment of PM parts that are case-hardened to obtain higher hardness, wear, fatigue, and impact properties. It describes the effects of porosity on heat treatment, alloy content on PM hardenability, and starting material on homogenization of PM steels. The article describes the properties, following heat treatment, of low-alloy steels tempered at 175 ºC for one hour, and lists recommended quench and temper parameters to achieve good wear resistance and core strength based on different ranges of porosity.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003988
EISBN: 978-1-62708-185-6
Abstract
Powder forging is an extension of the conventional press and sinter powder metallurgy process, which is recognized as an effective technology for producing a variety of parts to net or near-net shape. This article focuses on the material considerations, such as powder characteristics, alloy development, and inclusion assessment; and process considerations, such as process stages, tool design, and secondary operations; of ferrous alloy powder forging. The mechanical properties of powder forged materials are also reviewed. The article discusses the quality assurance tests for powder forged materials: the part dimensions and surface finish measurement, magnetic particle inspection, metallographic analysis, and nondestructive testing. It concludes with a discussion on the applications of powder forged parts with examples.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003113
EISBN: 978-1-62708-199-3
Abstract
This article discusses the production of low-alloy steel parts by powder forging, focusing on the material considerations, such as hardenability and inclusion assessment; and process considerations, including sintering and reheating, metal flow, and secondary operations. It presents the mechanical property data for copper and graphite powders mixed with an iron powder base to produce materials that generally contain 2″ Cu, including tensile, impact, and fatigue properties. Heat treatment procedures used in developing the properties of the prealloyed powder forged materials are also covered. Finally, the article describes the process steps and cost considerations in metal injection molding (MIM) and tabulates the composition, and mechanical properties of MIM low-alloy steels.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002486
EISBN: 978-1-62708-194-8
Abstract
This article begins with a discussion on general powder metallurgy design considerations that assist in the selection of the appropriate processing method. It reviews powder processing techniques, conventional press-and-sinter methods, and full-density processes to understand the design restrictions of each powder processing method. The article provides comparison of powder processing methods based on their similarities, differences, advantages, and disadvantages. It concludes with a discussion on design issues for the components of powder processing technologies.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001044
EISBN: 978-1-62708-161-0
Abstract
Certain metal products can be produced only by powder metallurgy; among these products are materials whose porosity is controlled. Successful production by powder metallurgy depends on the proper selection and control of process variables: powder characteristics; powder preparation; type of compacting press; design of compacting tools and dies; type of sintering furnace; composition of the sintering atmosphere; choice of production cycle, including sintering time and temperature; and secondary operations and heat treatment. When the application of a powder metallurgy part requires high levels of strength, toughness, or hardness, the mechanical properties can be improved or modified by infiltration, heat treatment, or a secondary mechanical forming operation such as cold re-pressing or powder forging. The article also discusses the effect of the secondary processes on P/M mechanical properties.