Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 329
Metal working
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006946
EISBN: 978-1-62708-387-4
Abstract
This article describes the general factors that can influence fracture appearances. The focus is on the general practical relationships of fracture appearances, with factors presented in some broad categories, including: material conditions (e.g., crystal structure and microstructure); loading conditions (stress state, strain rate, and fatigue); manufacturing conditions (casting, metal-working, machining, heat treatment, etc.); and service and environmental factors (hydrogen embrittlement, stress corrosion, temperature, and corrosion fatigue).
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007027
EISBN: 978-1-62708-387-4
Abstract
This article focuses on the fractography features of the conventional powdered metal (PM) process for ferrous powders. It discusses porosity, which is one of the inherent features present in components produced by conventional press-and-sinter processes, and green cracks, which are the most common fracture issue in conventional PM processes. It explains the effect of post-sintering operations. The article also presents the common ferrous powder metallurgy materials.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
Abstract
This article discusses failure mechanisms in tool and die materials that are very important to nearly all manufacturing processes. It is primarily devoted to failures of tool steels used in cold working and hot working applications. The processes involved in the analysis of tool and die failures are also covered. In addition, the article focuses on a number of factors that are responsible for tool and die failures, including mechanical design, grade selection, steel quality, machining processes, heat treatment operation, and tool and die setup.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006552
EISBN: 978-1-62708-290-7
Abstract
Hot isostatic pressing (HIP) is widely used within the additive manufacturing (AM) industry to improve material performance and ensure quality. This article is a detailed account of the HIP process, providing information on its equipment set up and discussing the applications, economics, and advantages of the process. The discussion also covers the use of HIP for additively manufactured material to eliminate internal defects, the HIP parameters required to eliminate internal defects, and the influence of HIP on the microstructure and properties of HIP additively manufactured material.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006714
EISBN: 978-1-62708-210-5
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006609
EISBN: 978-1-62708-210-5
Abstract
Alloy 2196 is a higher Li-containing alloy registered in 2000 for various aircraft extrusion parts. This datasheet provides information on composition limits and applications of alloy 2196 and 2296 as well as processing effects on mechanical properties of 2196-T8511 extrusions. A performance comparison of 2196-T8511 extrusion with alloy 2024 is also presented.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006739
EISBN: 978-1-62708-210-5
Abstract
This datasheet provides information on composition limits, fabrication characteristics, processing effects on physical and mechanical properties, and application performance of thick plate and forging alloy 7085. It presents the specified minimum strength and fracture properties for plate, die, and hand forgings. The datasheet provides a comparison of the strength, fracture toughness, and fatigue crack growth resistance of alloy 7085 plate with those of the legacy plate alloy 7050. It shows tensile yield and ultimate strength at elevated temperature for various temperatures and exposure times for 7085-T7452 die forgings.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006727
EISBN: 978-1-62708-210-5
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006728
EISBN: 978-1-62708-210-5
Abstract
The extrusion alloy 7005 is used as extruded structural members, where welded or brazed assemblies require moderately high strength and high fracture toughness. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series alloy.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006598
EISBN: 978-1-62708-210-5
Abstract
This datasheet provides information on key alloy metallurgy, mill product specifications, processing effects on physical and mechanical properties, and applications of high-strength aerospace alloys 2024 and Alclad 2024. It contains tables that list values of tensile property limits for 2024 sheet, plate, and round product forms. Figures illustrate the effect of stretching and aging on toughness of the 2024 sheet and the effect of temperature on tensile properties of 1.0 mm thick Alclad 2024-T3 sheet.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006613
EISBN: 978-1-62708-210-5
Abstract
The high-strength plate alloy 2324 is a modification of 2024 alloy composition and process conditions to increase strength in both plate and extrusions without a loss in fracture toughness and other characteristics. This datasheet provides information on key alloy metallurgy, as well as the effects of processing on mechanical properties of this 2xxx series alloy. A comparison of fracture toughness of 2324-T39 to 2024-T351 is presented.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006599
EISBN: 978-1-62708-210-5
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006600
EISBN: 978-1-62708-210-5
Abstract
Alloy 2027 is an Al-Cu-Mg-Mn-Zr alloy providing improved mechanical properties compared with those of alloy 2024. Alloy 2027-T3511 extrusions are typically used for stringers to stiffen wing skin panels machined from damage tolerant 2xxx alloy plates. This datasheet provides information on key alloy metallurgy and processing effects on mechanical properties of plate and extrusions of this 2xxx series alloy.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006616
EISBN: 978-1-62708-210-5
Abstract
This datasheet provides information on composition limits, key metallurgy, fabrication characteristics, processing effects on physical, tensile, and creep-rupture properties, and applications of Al-Cu-Mg-Ni alloys 2618 and 2618A. The influence of prolonged holding at elevated temperature on tensile properties and the influence of temperature on compressive yield strength of alloy 2618-T61 hand-forged billets are illustrated.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006720
EISBN: 978-1-62708-210-5
Abstract
This datasheet provides information on composition limits, processing effects on physical and mechanical properties, and fabrication characteristics of electrical bus conductor aluminum alloys 6101 and 6201 along with standard temper designations. Machining and forming characteristics of alloy 6101 are compared with related alloys and tempers.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006709
EISBN: 978-1-62708-210-5
Abstract
Alloys 6005 and 6105 were developed in the 1960s to be used in place of alloy 6061 in many applications. This datasheet provides information on chemical composition limits, fabrication characteristics, processing effects on physical and mechanical properties, and applications of medium-strength extrusion alloys 6005, 6005A, and 6105.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006602
EISBN: 978-1-62708-210-5
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006721
EISBN: 978-1-62708-210-5
1