Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 25
Metal refinement and extractive metallurgy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006483
EISBN: 978-1-62708-207-5
Abstract
This article describes the Bayer process for the purification of alumina. The process includes four major stages: digestion, clarification, precipitation, and calcination. The article discusses the aluminum electrolytic process in terms of aluminum electrolysis cell design, magnetohydrodynamic forces, and cathode lining. It reviews the electrochemical reactions and thermodynamics for aluminum electrolysis standard Gibbs. The article also describes the cell operations and cell stability, as well as the key indicators of cell performance. It schematically illustrates the typical costs producing aluminum in an aluminum smelter. The article also discusses various environmental issues, such as fluoride recovery; perfluorocarbons, polycyclic aromatic hydrocarbons, and sulfur emissions; spent pot lining; and development of inert anodes and CO2 emissions.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006484
EISBN: 978-1-62708-207-5
Abstract
Aluminum possesses many characteristics that make it highly compatible with recycling. Production of aluminum from scrap has a number of advantages. This article discusses the technology for the recovery, sorting, and remelting of aluminum. It describes the collection and acquisition of aluminum scrap in transportation, packaging, electrical and electronic, and building and construction sectors. The article reviews the technologies used to accomplish comminution for aluminum: shearing, knife shredding, and swing-hammer shredding. It provides a description of the devices used in scrap sorting, such as hand sorting, air classification, magnetic separation, eddy-current separation, heavy-media separation, and sensor-based sorting. The article also describes thermal processing, refining and casting, and dross processing of aluminum. It provides information on reverberatory and electric furnaces used for melting aluminum.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006122
EISBN: 978-1-62708-175-7
Abstract
This article discusses the methods for producing powder metallurgy (PM) nickel powders, including carbonyl process, hydrometallurgical process, hydrogen reduction process, and atomization process, as well as their applications. It describes three processes for producing nickel alloy powders: water atomization, high-pressure water atomization, and gas atomization. The article also provides information on the applications of PM hot isostatic pressing in the oil and gas industry.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005204
EISBN: 978-1-62708-187-0
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005303
EISBN: 978-1-62708-187-0
Abstract
This article describes the casting characteristics and practices of copper and copper alloys. It discusses the melting and melt control of copper alloys, including various melt treatments to improve melt quality. These treatments include fluxing and metal refining, degassing, deoxidation, grain refining, and filtration. The article provides a discussion on these melt treatments for group I to III alloys. It describes the three categories of furnaces for melting copper casting alloys: crucible furnaces, open-flame furnaces, and induction furnaces. The article explains the important factors that influence the selection of a casting method. It discusses the production of copper alloy castings. The article concludes with information on the gating and feeding systems used in production of copper alloy castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005247
EISBN: 978-1-62708-187-0
Abstract
Primary silicon in hypereutectic aluminum-silicon alloys is very hard, not only imparting improved wear resistance but also decreasing tool life during machining. This article discusses the importance of primary silicon refinement and the process of accomplishing primary silicon refinement.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005351
EISBN: 978-1-62708-187-0
Abstract
In the handling of molten aluminum, it is fairly common to use filters as a part of the melting unit and in the gating and/or riser system. This article describes the methods of in-furnace and in-mold filtration, with an emphasis on the filtration of molten aluminum. It discusses the factors that influence the formation of inclusions. The article describes the three basic methods of mechanically removing or separating inclusions from molten metal. The methods include sedimentation, flotation, and positive filtration. The article provides a discussion on the types of molten-metal filters, including bonded-particle filters, cartridge filters, and ceramic foam filters. It lists the factors that are important in achieving optimum performance of any in-furnace filtering application. The article concludes with information on filtered metal quality and the methods of evaluation.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005200
EISBN: 978-1-62708-187-0
Abstract
Vacuum induction melting (VIM) is often done as a primary melting operation followed by secondary melting (remelting) operations. This article presents the process description of VIM and illustrates potential processing routes for products, which are cast from VIM ingots or electrodes. It describes the VIM refinement process, which includes the removal of trace elements, nitrogen and hydrogen degassing, and deoxidation. The article concludes with information on the production of nonferrous materials by VIM.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003847
EISBN: 978-1-62708-183-2
Abstract
Natural and synthetic rubber linings are used extensively in many industries for their corrosion and/or abrasion resistance. These industries include transportation, chemical processing, water treatment, power, mineral processing, and mining. This article provides information on soft natural rubber, semihard natural rubber, hard natural rubber, neoprene or polychloroprene, chlorobutyl, three-ply linings, nitrile, and ethylene propylene with a diene monomer. Emphasis is placed on advantages, disadvantages, and common uses of each material discussed.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003579
EISBN: 978-1-62708-182-5
Abstract
The electrode potential is one of the most important parameters in the thermodynamics and kinetics of corrosion. This article discusses the fundamentals of electrode potentials and illustrates the thermodynamics of chemical equilibria by using the hydrogen potential scale and the Nernst equation. It describes galvanic cell reactions and corrosion reactions in an aqueous solution in an electrochemical cell. The article explores the most common cathodic reactions encountered in metallic corrosion in aqueous systems. The reactions included are proton reduction, water reduction, reduction of dissolved oxygen, metal ion reduction, and metal deposition. The article also presents the standard equilibrium potentials measured at 25 deg C relative to a standard hydrogen electrode for various metal-ion electrodes in a tabular form.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003599
EISBN: 978-1-62708-182-5
Abstract
Electrochemical refining is the purification process for producing commercially pure metals from crude metals. This article describes the principles of electrochemical reactions. It discusses the physical properties of the basic components of electrochemical refining cell. The article also explains the engineering considerations required in the refining process. Theoretical and technological principles of electrochemical refining are illustrated, with examples.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003629
EISBN: 978-1-62708-182-5
Abstract
This article describes the methods of wear measurements and a model of corrosive wear in mill atmospheres. It explains the polarization curves of pyrrhotite and high-carbon low-alloy steel in a quartzite slurry with examples. The surfaces of pyrrhotite in contact with mild steel or stainless steel affected by galvanic interaction are discussed. The article contains a table that lists the results of laboratory marked ball wear tests for three types of steel balls in wet grinding of magnetic taconite. It also provides information on the mechanism of electrochemical interaction and relative significance of corrosion and abrasion in wear. Galvanic interactions in multielectrode systems are reviewed. The article presents a case history on the material selection for grinding balls to minimize corrosion loss and the adverse effect on flotation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
Abstract
Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental applications of metallic biomaterials. A table compares the mechanical properties of some common implant materials with those of bone. The article also provides information on coatings, ceramics, polymers, composites, cements, and adhesives, especially where they interact with metallic materials.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003169
EISBN: 978-1-62708-199-3
Abstract
Ores, which consist of the primary valuable mineral, predominant gangue content, valuable by-products, and detrimental impurities, are extracted and directed to mineral processing. This article describes the mineral processing facilities, such as crushers, grinders, concentrators, separators, and flotation devices that are used for particle size reduction, separation of particles according to their settling rates in fluids and dewatering of concentrate particles. It explains the basic principles, flow diagrams, ore concentrate preparation methods, and equipment of major types of metallurgical processes, including pyrometallurgical, hydrometallurgical, and electrometallurgical processes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003147
EISBN: 978-1-62708-199-3
Abstract
Nickel and nickel-base alloys are vitally important to modern industry because of their ability to withstand a wide variety of severe operating conditions involving corrosive environments, high temperatures, high stresses, and combinations of these factors. This article discusses the mining and extraction of nickel and describes the uses of nickel. It discusses the categories of nickel-base alloys, including wrought corrosion-resistant alloys, cast corrosion-resistant alloys, heat-resistant alloys (superalloys), and special-purpose alloys. The article covers the corrosion resistance of nickel with the inclusion of varying alloying elements. It provides useful information on the behavior of nickel and nickel alloys in specific environments describes its corrosion resistance in certain acids, alkalis, and salts.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003148
EISBN: 978-1-62708-199-3
Abstract
Cobalt finds its use in various applications owing to its magnetic properties, corrosion resistance, wear resistance, and its strength at elevated temperatures. This article discusses the mining and processing of cobalt and cobalt alloys. It describes the types of cobalt alloys, including wear-resistant alloys, high-temperature alloys, corrosion-resistant alloys, and special-purpose alloys. The article provides data on the chemical composition, mechanical properties, and physical properties of these alloys. Further, it provides information on the uses of cobalt in superalloys, cemented carbides, magnetic materials, low-expansion alloys, and high-speed tool steels.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001262
EISBN: 978-1-62708-170-2
Abstract
Pulsed-current plating can be defined simply as metal deposition by pulsed electrolysis, which involves using interrupted direct current to electroplate parts. This article discusses the advantages and limitations of pulsed-current plating and provides information on the process principles and control, solution composition, operating conditions, and necessary equipment modifications.
1