Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 91
Shearing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006494
EISBN: 978-1-62708-207-5
Abstract
The horsepower requirements to cut various metal alloys provide an indication of the relative ease and cost of machining, but several other important factors include cutting tool material, chip formation, cutting fluids, cutting tool wear, surface roughness, and surface integrity. This article reviews these general machining factors as well as specific cutting tool and cutting parameters for the six basic chip-forming processes of turning, shaping, milling, drilling, sawing, and broaching. Best practices for each of the six chip-forming processes are suggested for optimized machining of aluminum alloys. The article lists the inherent disadvantages of machining processes that involve compression/shear chip formation. It discusses the machining of aluminum metal-matrix composites and nontraditional machining of aluminum, such as abrasive jet, waterjet, electrodischarge, plasma arc, electrochemical, and chemical machining.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006425
EISBN: 978-1-62708-192-4
Abstract
This article discusses the tribology of three main sheet forming processes: deep drawing, bending, and shearing. For each process, the basic principle of the forming process is briefly explained. Tribological phenomena observed in each process, such as wear and galling, are presented. Common methods of using lubricants and coatings in sheet forming processes are also described.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005528
EISBN: 978-1-62708-197-9
Abstract
This article discusses a set of experimental and computational studies aimed at understanding the effect of various processing parameters on the extent of burr and other defect formation during sheet edge-shearing and slitting processes. It describes the development of experimentally validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process, along with sensitivity studies with respect to process and tool parameters.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005108
EISBN: 978-1-62708-186-3
Abstract
This article discusses the production of blanks from low-carbon steel sheet and strip in dies in a mechanical or hydraulic press. It describes the cutting operations that are done by dies in presses to produce blanks. The applications of blanking methods are described with examples. The article reviews the characteristics of blanked edges and explains how to calculate the forces and the work involved in blanking. Factors affecting the processing of blanks are discussed. The article provides information on the selection of work metal form, the effect of work metal thickness on the selection of material for dies and related components, as well as the selection of die type and design. The article illustrates the construction and use of short-run dies and conventional dies. It concludes with information on the shaving and deburring methods for blanking.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005117
EISBN: 978-1-62708-186-3
Abstract
This article begins with a discussion on the fundamentals of cutting. It focuses on blanking and piercing operations in a press tool to form and shape the final part geometry. The types of piercing operations include conventional piercing, piercing with a pointed punch, piece-and-extrude operations, slotting, countersinking, and cutting and lancing of tabs. The article provides information on the punch assembly, the die assembly, and the stripper and discusses the factors considered during piercing operations. It reviews the applications of the four types of blanks used in sheet-forming operations, namely, rectangular blank, rough blank, partially developed blank, and fully developed blank. It concludes with a discussion on the process capabilities, applications, and limitations of fine-edge blanking and piercing.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005149
EISBN: 978-1-62708-186-3
Abstract
Sheet metal forming operations are so diverse in type, extent, and rate that no single test provides an accurate indication of the formability of a material in all situations. This article presents an overview of types of forming, formability problems, and principal methods of measuring deformation. It reviews the effect of materials properties and temperature on formability. The article provides a detailed discussion on the two major categories of formability tests such as the intrinsic test, including uniaxial tension testing, plane-strain tension testing, biaxial stretch testing, and simulative tests such as bending tests, stretching tests, the Ohio State University test, the drawing test, and stretch-drawing tests. It extends the correlation between simulative tests and materials properties using forming limit diagrams and circle grid analysis, and discusses the improvements to the forming limit diagram technology.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005168
EISBN: 978-1-62708-186-3
Abstract
This article discusses the numerical simulation of the forming of aluminum alloy sheet metals. The macroscopic and microscopic aspects of the plastic behavior of aluminum alloys are reviewed. The article presents constitutive equations suitable for the description of aluminum alloy sheets. It explains testing procedures and analysis methods that are used to measure the relevant data needed to identify the material coefficients. The article describes the various formulations of finite element methods used in sheet metal forming process simulations. Stress-integration procedures for both continuum and crystal-plasticity mechanics are also discussed. The article also provides various examples that illustrate the simulation of aluminum sheet forming.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005169
EISBN: 978-1-62708-186-3
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005155
EISBN: 978-1-62708-186-3
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005179
EISBN: 978-1-62708-186-3
Abstract
This article introduces process factors that influence die wear and lubrication for metal forming operations such as bending, spinning, stretching, deep drawing, and ironing. It discusses the effects of part shape, sheet thickness, tolerance requirements, sheet metal, and lubrication on shallow forming dies. The article describes the wear of material for dies to draw round and square cup-shaped metal parts in a press. It also discusses the effect of process conditions on the shallow forming dies.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005150
EISBN: 978-1-62708-186-3
Abstract
This article describes grade designations of the various sheet steels used for draw forming. It discusses the specifications associated with most sheet draw forming materials. The article examines the behavior of stress- and strain-based forming limit curve (FLC). It provides a discussion on three separate frictional conditions acting in a draw die. The frictional conditions include the metal passing through a draw bead, the metal clamped in the binder, and the metal sliding across a die radius. The article also explains the basic steps in the vehicle development process. The steps involved in the thought process of direct engineering for formability are also explained. The article places considerable emphasis on the need for the designer to clearly define the die/tooling faces in the computer-aided design (CAD)/computer-aided manufacturing (CAM) system before the data are passed on to the construction functions.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005180
EISBN: 978-1-62708-186-3
Abstract
The multiple-slide machine, sometimes called a four-way, four-slide, or multislide machine, is a somewhat specialized item of stamping equipment, although it is very versatile within a limited area of stamping applications. This article discusses the construction and advantages of multiple-slide machines. It presents comparisons of four-slide operations with press operations based on production speed, tooling cost, tool adjustments, and operating cost. The article reviews some factors to be considered while selecting multiple-slide machines. It summarizes the strip materials commonly used in four-slide production. The article examines the design factors of four-slide parts, including tolerances and finishes. It provides the design recommendations for optimal part quality at maximum production speed. The article also discusses various four-slide cutoff methods.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005166
EISBN: 978-1-62708-186-3
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005147
EISBN: 978-1-62708-186-3
Abstract
This article discusses many of the processes and related considerations involved in the forming of superplastic sheet metal parts. It reviews the requirements for superplasticity and describes the characteristics of superplastic metals. The characterization of superplastic behavior includes the characterization of plastic flow, internal cavitation, and fracture behavior. Processing variables needed for the overall characterization of superplastic behavior are summarized. The article discusses the superplastic forming methods, namely, blow forming, vacuum forming, thermoforming, deep drawing, superplastic forming/diffusion bonding, forging, extrusion, and dieless drawing. It provides information on superelastic forming equipment and tooling. The article explains the thinning characteristics and quick plastic forming and its technological elements. It describes the manufacturing practice of the process. The article concludes with a discussion on the superplastic behavior in iron-base alloys.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005116
EISBN: 978-1-62708-186-3
Abstract
Many shearing, blanking, and piercing operations are based on the same underlying principles of shear mechanisms. This article provides information on the various operations associated with die cutting and describes three phases involved in the shear cutting or punching action. These phases include deformation, penetration and fracture. The article also explains the effect of clearance on tool life and force and power requirements. It reviews the forces involved in the punching process and describes the diameter of a hole or blank in relation to material thickness. The limitations of punching are also discussed. The article describes the relationship of the die clearance to stress-strain curves and explains the procedure of interpreting the stress-strain curves. The article concludes with information on the dynamic stripping forces in blanking.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005148
EISBN: 978-1-62708-186-3
Abstract
The selection of material for a drawing die is aimed at the production of the desired quality and quantity of parts with the least possible tooling cost per part. This article discusses the performance of a drawing die. It contains tables that list the lubricants used for deep drawing, and the typical materials for punches and blank holders. The article describes the typical causes of wear (galling) of deep-drawing tooling. It analyzes the selection of a harder and more wear-resistant material, the application of a surface coating such as chromium plating to the finished tools, and surface treatments such as carburizing or carbonitriding for low-alloy steels or nitriding or physical vapor deposition coating for tool steels.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005167
EISBN: 978-1-62708-186-3
Abstract
This article describes the formability and surface contamination of the refractory metals such as niobium, tantalum, molybdenum, tungsten, and titanium-zirconium-molybdenum alloys. It reviews the factors that affect mechanical properties and formability during rolling and heat treatment. The effect of temperature on the formability of refractory metals is discussed. The article provides a description of the forming methods of sheet and preformed blanks using refractory metals. It also discusses the types of lubricants, including oils, soaps, waxes, silicones, graphite, and molybdenum disulphide, used in the forming of refractory metals.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009154
EISBN: 978-1-62708-186-3
Abstract
Mechanical joining by forming includes all processes where parts being joined are formed locally and sometimes fully. This article focuses on the types, advantages, disadvantages, and applications of the various mechanical joining methods, namely, riveting, crimping, clinching, and self-pierce riveting.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005181
EISBN: 978-1-62708-186-3
Abstract
This article presents formulas for calculating the following: effective stress, strain, and strain rate (isotropic material) in arbitrary coordinates and in principal coordinates; compression testing, tension testing, and torsion testing of isotropic material; and Barlat's anisotropic yield function Yld2000-2d for plane-stress deformation of sheet material. It also contains formulas related to flat (sheet) rolling, conical-die extrusion, wire drawing, bending, and deep drawing of cups from sheet metal.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005118
EISBN: 978-1-62708-186-3
Abstract
Trimming is the removal of excess metal from a stamped part to allow the part to reach the finished stage or to prepare it for subsequent operations. This article presents an analysis of parts to be trimmed and describes the selection criteria for the different types of trimming dies such as conventional trimming dies and cam trimming dies. It provides information on rough and finish trimming and construction details of trimming dies. The article reviews the selection criteria of presses for a trimming operation. It provides a discussion on the scrap and material handling processes in trimming.