Skip Nav Destination
Close Modal
By
ASM Committee on Mechanical Cutting for Welding Preparation, Lance R. Soisson, Chris Cable, Richard S. Cremisio, Chuck Dvorak ...
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-15 of 15
Shearing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006494
EISBN: 978-1-62708-207-5
Abstract
The horsepower requirements to cut various metal alloys provide an indication of the relative ease and cost of machining, but several other important factors include cutting tool material, chip formation, cutting fluids, cutting tool wear, surface roughness, and surface integrity. This article reviews these general machining factors as well as specific cutting tool and cutting parameters for the six basic chip-forming processes of turning, shaping, milling, drilling, sawing, and broaching. Best practices for each of the six chip-forming processes are suggested for optimized machining of aluminum alloys. The article lists the inherent disadvantages of machining processes that involve compression/shear chip formation. It discusses the machining of aluminum metal-matrix composites and nontraditional machining of aluminum, such as abrasive jet, waterjet, electrodischarge, plasma arc, electrochemical, and chemical machining.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006425
EISBN: 978-1-62708-192-4
Abstract
This article discusses the tribology of three main sheet forming processes: deep drawing, bending, and shearing. For each process, the basic principle of the forming process is briefly explained. Tribological phenomena observed in each process, such as wear and galling, are presented. Common methods of using lubricants and coatings in sheet forming processes are also described.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005528
EISBN: 978-1-62708-197-9
Abstract
This article discusses a set of experimental and computational studies aimed at understanding the effect of various processing parameters on the extent of burr and other defect formation during sheet edge-shearing and slitting processes. It describes the development of experimentally validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process, along with sensitivity studies with respect to process and tool parameters.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005102
EISBN: 978-1-62708-186-3
Abstract
Shearing is a method for cutting a material piece into smaller pieces using a shear knife to force the material past an opposition shear knife in a progression form. This article describes the principles, attributes, and defects of straight-knife shearing. The equipment, materials used, and the operating parameters are discussed. The article provides information on the applications of rotary shearing. It concludes with a discussion on devices equipped with shearing machines for protecting personnel from the hazards of shear knives, flywheels, gears, and other moving parts.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005103
EISBN: 978-1-62708-186-3
Abstract
Metal production mills produce flat metal sheet and strip products into coil forms that are subjected to further fabrication for shape correction. This article provides a discussion on the principle of shape correction and describes the role of various fabrication processes in shape correction. These processes include flattening, leveling, slitting, and cut-to-length.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005145
EISBN: 978-1-62708-186-3
Abstract
This article tabulates the nominal compositions for nickel and cobalt alloys. It illustrates the comparison of strain-hardening rates of a number of alloys in terms of the increase in hardness with increasing cold reduction. The forming practice for age-hardenable alloys and the lubricants used in the forming processes of nickel and cobalt alloys are also discussed. The article summarizes the modification of tools and dies used for cold forming other metals, as the physical and mechanical properties of nickel and cobalt alloys frequently necessitate it. It discusses forming techniques for these alloys and provides several examples of these techniques, which include shearing, blanking, piercing, deep drawing, spinning, explosive forming, bending, and expanding/tube forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005104
EISBN: 978-1-62708-186-3
Abstract
Shearing is a process of cutting flat product with blades, rotary cutters, or with the aid of a blanking or punching die. This article commences with a description of some wear and material factors for tools used to shear flat product, principally sheet. Methods of wear control are reviewed in terms of tool materials, coatings and surface treatments, and lubrication. The article discusses tool steels that are used for cold and hot shearing, and rotary slitting. It provides information on the materials used for two main categories of machine knives: circular knives and straight knife cutters. The article also discusses the selection of materials for blanking and piercing dies and provides examples that illustrate the various types of tooling changes for blanking high-carbon steel.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005178
EISBN: 978-1-62708-186-3
Abstract
This article discusses the most important factors required for cutoff methods. It explains the operations of machines used for the punching, shearing, notching, or coping of plates, bars, and structural sections. The article describes the effects of the blade angle and speed on the shear blade life. It reviews the design requirements and best practices for the production of blades. The article compares double-cut dies with single-cut dies used for shearing of structural and bar shapes. The shearing of specific forms, such as angle iron and flat stock, is also discussed. The article describes the advantages of hydraulic bar and structural shears. It concludes with information on the principle and construction of impact cutoff machines.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005116
EISBN: 978-1-62708-186-3
Abstract
Many shearing, blanking, and piercing operations are based on the same underlying principles of shear mechanisms. This article provides information on the various operations associated with die cutting and describes three phases involved in the shear cutting or punching action. These phases include deformation, penetration and fracture. The article also explains the effect of clearance on tool life and force and power requirements. It reviews the forces involved in the punching process and describes the diameter of a hole or blank in relation to material thickness. The limitations of punching are also discussed. The article describes the relationship of the die clearance to stress-strain curves and explains the procedure of interpreting the stress-strain curves. The article concludes with information on the dynamic stripping forces in blanking.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.9781627081863
EISBN: 978-1-62708-186-3
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
Abstract
This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging. It deals with various upsetting processes: offset upsetting, double-end upsetting, upsetting with sliding dies, upsetting pipe and tubing, and electric upsetting. The article also provides information on hot forging and cold forging.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003380
EISBN: 978-1-62708-195-5
Abstract
Delamination is one of the most commonly observed failure modes in composite materials. This article describes the three fundamental fracture failure modes of composite delamination, namely, opening, in-plane shearing, and tearing or scissoring shearing modes. It discusses the characterization and analysis of delamination. The article also reviews the prediction of delamination factors, such as flexbeam fatigue life, and skin/stiffener pull-off strength and life.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003179
EISBN: 978-1-62708-199-3
Abstract
This article discusses the operating principles, types, and applications of shearing and slitting of different forms of steel, including plates, flat sheets, bars, coiled sheet and strips. In addition, it provides a detailed account of the cutting methods such as oxyfuel gas cutting, plasma arc cutting, oxygen arc cutting, laser beam cutting, and air carbon arc cutting and gouging, describing their process capabilities, equipment used, operating principles and parameters, and factors affecting their efficiency.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002406
EISBN: 978-1-62708-193-1
Abstract
This article provides an overview of fatigue and fracture resistance of aluminum alloys. It discusses the characteristics of aluminum alloy classes and the fracture mechanics of aluminum alloys. The article tabulates relative stress-corrosion cracking ratings for high-strength wrought aluminum products. It analyzes the selection of various alloys for stress-corrosion cracking resistance, including aluminum-lithium alloys, copper-free 7XXX alloys, and casting alloys. The article presents a list of typical tensile properties and fatigue limit of aluminum alloys. It also describes the effects of composition, microstructure, thermal treatments, and processing in fatigue crack growth of aluminum alloys.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001486
EISBN: 978-1-62708-173-3
Abstract
Mechanical cutting methods are widely used by the metal fabrication industry. This article introduces the welding fabricator to some of the mechanical equipment used to shape or prepare metals for welding. The most prevalent equipment used for mechanical cutting includes shears, iron workers, nibblers, and band saws. The article provides details on each of these.