Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9
Friction stir welding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006572
EISBN: 978-1-62708-290-7
Abstract
The majority of currently used additive manufacturing (AM) processes are solidification based (SAM). Another class of AM processes consists of those that rely on deformation (DAM) to place material instead of solidification. Although SAM processes are much more widely used, as research and development continues in DAM processes, they are becoming increasingly attractive, especially for the AM of metals. This article discusses some of the more widely used DAM processes, namely ultrasonic additive manufacturing, cold spray process, and friction stir welding, focusing on their applications, advantages, and limitations.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006500
EISBN: 978-1-62708-207-5
Abstract
This article focuses on friction stir welding (FSW), where frictional heating and displacement of the plastic material occurs by a rapidly rotating tool traversing the weld joint. Much of the research activity early on pertained to issues related to understanding the process, such as learning about material flow, heat generation, microstructure development, and many other fundamental issues. The article summarizes the results of the research, describing the aspects of how FSW actually accomplishes sound joints in metals without melting them. It discusses the FSW process variations and the practical aspects of heat generation. The article provides information on the effect of welding on material properties and typical alloys in FSW applications. The alloys include 6061 aluminum, 5083 aluminum, 2xxx aluminum, and 7xxx aluminum alloys. The article concludes with a discussion on FSW equipment.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006389
EISBN: 978-1-62708-192-4
Abstract
This article discusses the application of friction stir processing (FSP) and friction surfacing for tribological components. It describes the three critical aspects involved in the application of FSP for near-surface material modifications intended for tribological applications. These include tools, processing parameters, and machines. The article also discusses the equipment and processing parameters for friction surfacing. It describes various hybrid stir processing techniques that involve preheating of the workpiece material, especially relatively hard and high-strength ones. The article presents a partial list of surface-modification methods based on FSP. The partial list includes surface hardening, surface composites, and additive coating. The article also provides information on generation of residual stresses in metallic materials and alloys form different variants of FSP.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005576
EISBN: 978-1-62708-174-0
Abstract
This article discusses the development of a welding procedure for friction stir welding (FSW), including the process of defining a preliminary procedure, the optimization of parameters, the development of supporting data, and other key features to ensure a successful procedure. The critical features of FSW tool design, initial process parameters, systematic welding trials, and robustness testing are reviewed. The article provides information on the common features of welding procedure qualification. It also includes a table that lists the procedures used in the production of sound friction stir welds in various aluminum alloys.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005629
EISBN: 978-1-62708-174-0
Abstract
A key differentiator between friction stir welding (FSW) and other friction welding processes is the presence of a nonconsumable tool in FSW, often referred to as a pin tool to differentiate it from other tooling associated with the process. This article discusses materials for friction stir welding (FSW) pin tools, various tool geometries that have been used, designs for specific applications, predicting and measuring tool performance, and other considerations in FSW pin tool design. The tool materials include tool steels, superalloys, refractory metals, carbides and ceramics, and superabrasives.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
Abstract
Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental temperature measurements during FSW of various metals. It considers the physical explanation of the heat input during FSW and the possible methods of their estimation. The article presents the experimental results of two analytical models, supplemented by experimental/numerical flow models on material flow during FSW. The types of defects, processing parameters affecting the generation of these defects, and results of theoretical models and simulations to understand the formation and control of defects during FSW are discussed. The article concludes with information on the microstructure and its distribution produced during FSW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.9781627081740
EISBN: 978-1-62708-174-0
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005526
EISBN: 978-1-62708-197-9
Abstract
This article discusses the fundamentals of friction stir welding (FSW) and presents governing equations and an analytical solution for heat transfer. It provides the solutions for structural distortion in FSW. The article describes various techniques that have been adopted to solve the equations and simulate the FSW process. The techniques include modeling without convective heat transfer and modeling with convective heat transfer in a workpiece. The article concludes with information on active research topics in the simulation of FSW.