Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9
Force microscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
Abstract
This article discusses the operating principles, advantages, and limitations of scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy that are used to analyze the surface chemistry of plastics.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006633
EISBN: 978-1-62708-213-6
Abstract
This article provides an overview of scanning probe microscopes (scanning tunneling microscope and atomic force microscope (AFM)), covering the various operating modes and probes used in these instruments and providing information on AFM instrumentation, applications, and analyses.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006658
EISBN: 978-1-62708-213-6
Abstract
This article focuses on laboratory atomic force microscopes (AFMs) used in ambient air and liquid environments. It begins with a discussion on the origin of AFM and development trends occurring in AFM. This is followed by a section on the general principles of AFM and a comprehensive list of AFM scanning modes. There is a brief description of how each mode works and what types of applications can be made with each mode. Some of the processes involved in preparation of samples (bulk materials and those placed on a substrate) scanned in an AFM are then presented. The article provides information on the factors applicable to the accuracy and precision of AFM measurements. It ends by discussing the applications for AFMs in the fields of science, technology, and engineering.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006379
EISBN: 978-1-62708-192-4
Abstract
This article first describes surface forces, and the methods of measuring them, followed by a discussion on adhesion. It discusses the instrumental requirements and techniques, including Atomic Force Microscopy (AFM), used for the measurement of surface forces. Measurements of surface roughness, with AFM, can provide a precise picture of surface roughness and can be used as input for contact mechanics computer models. The article also describes microscale adhesion and adhesion measurement methods using microelectromechanical systems technologies. It reviews certain considerations used for the measurement of adhesion, such as fundamental adhesion measurements, history dependence and sample preparation, and practical adhesion measurements. The article describes various arrangements that can be employed in adhesion tests.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006387
EISBN: 978-1-62708-192-4
Abstract
This article describes the determination of wear loss by measuring either mass change or dimensional change of lubricants and materials. It discusses the principles, advantages and disadvantages of mass loss measures and dimensional measures of wear. The article details wear measurement at the nanoscale, such as atomic force microscopy (AFM) measurement and scanning electron microscopy measurement. It reviews the techniques of wear measurement at the atomic level, namely, transmission electron microscopy (TEM) measurement and AFM combined with TEM measurement.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003788
EISBN: 978-1-62708-177-1
Abstract
Microstructural analysis of specialized types of magnetic materials is centered on the examination of optical, electron, and scanning probe metallographic techniques unique to magnetic materials. This article provides a comprehensive overview of magnetic materials, their characteristics and sample preparation procedures. It reviews the methods pertaining to the microstructural examination of bulk magnetic materials, including microscopy techniques specified to magnetic materials characterization, with specific examples. The techniques used in the study of magnetic domain structures (microstructure) include the magneto-optical Kerr method, the Faraday method, the Bitter technique, scanning electron microscopy (magnetic contrast Types I and II), scanning electron microscopy with polarization analysis, Lorentz transmission electron microscopy, and magnetic force microscopy. The article also illustrates the microstructure of different types of soft magnetic material and permanent magnets.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002363
EISBN: 978-1-62708-193-1
Abstract
This article describes the test techniques that are available for monitoring crack initiation and crack growth and for obtaining information on fatigue damage in test specimens. These techniques include optical methods, the compliance method, electric potential measurement, and gel electrode imaging methods. The article discusses the magnetic techniques that are primarily used as inspection techniques for detecting fatigue cracks in structural components. It details the principles and operation procedures of the liquid penetrant methods, positron annihilation techniques, acoustic emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process.