Skip Nav Destination
Close Modal
By
ASM Committee on Mechanical Cutting for Welding Preparation, Lance R. Soisson, Chris Cable, Richard S. Cremisio, Chuck Dvorak ...
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8
Clamping
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006371
EISBN: 978-1-62708-192-4
Abstract
Seals are mechanical components that prevent the leakage, diffusion, transfer, or mixing of different liquid, gas, solid, and multiphasic substances. This article begins by discussing the classifications of seals: static and dynamic. Static seals involve both self-energizing elastomeric materials such as O-rings, which merely react to a sealed fluid pressure, and passive materials that require clamping forces to achieve sealing, such as gaskets. The types of dynamic seals include rotary seals and reciprocating seals. The article describes the factors affecting seal wear and failure. It provides a list of some common seal wear modes and failures, namely abrasion, cavitation damage, chemical attack, compression set, corrosion, damage during abrupt decompression, dieseling damage, extrusion damage, installation damage, spiral or rolling damage, and vaporization damage. The article concludes with specific recommendations for reducting of seal friction and wear.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009072
EISBN: 978-1-62708-177-1
Abstract
This article describes how composite specimens are sectioned, documented, and labeled during sample preparation. The mounting procedures for the specimen are summarized. The article explains sample clamping, which involves not mounting the specimens using an adhesive or casting resin and corresponds to clamped samples used in automated polishing heads. It details that cavity molds involve mounting the composite specimens using a casting resin in a preset mold. The article also discusses the mounting of composite materials for hand polishing.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001453
EISBN: 978-1-62708-173-3
Abstract
This article focuses primarily on the various steps involved in the brazing of heat-resistant alloys (nickel- and cobalt-base alloys). The major steps include the selection of brazing filler metals, surface cleaning and preparation, brazing processes and their corresponding atmospheres, and fixturing. The article also provides an overview of the brazing of blow-alloy steels and tool steels and oxide dispersion-strengthened alloys.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001486
EISBN: 978-1-62708-173-3
Abstract
Mechanical cutting methods are widely used by the metal fabrication industry. This article introduces the welding fabricator to some of the mechanical equipment used to shape or prepare metals for welding. The most prevalent equipment used for mechanical cutting includes shears, iron workers, nibblers, and band saws. The article provides details on each of these.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001387
EISBN: 978-1-62708-173-3
Abstract
This article begins with a discussion on the principle of induction brazing and addresses applications, advantages, and limitations of the process. It provides information on the induction brazing equipment and solid-state induction generators that are used in induction brazing. The article illustrates several basic joint designs for induction brazing as well as typical coils and some frequent applications and lists joint parameters for parts which are to be brazed by induction heating. It concludes with a discussion on the effect of thermal expansion on stress in the joint.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001451
EISBN: 978-1-62708-173-3
Abstract
Cast irons and carbon steels are brazeable materials, although the brazeability of cast iron is lower than that of carbon steel. The article provides a detailed discussion on the brazeability of different types of cast iron (malleable iron, ductile iron, and gray iron), carbon steels, and dissimilar metals. It describes the factors considered in the selection of filler-metal for cast iron and carbon steel brazing, such as temperature and environment, brazed joint design, heat source, and heat-treatment requirements. The article also discusses the basic considerations in cleaning and fixturing procedures, filler metal and flux/atmosphere feeding procedures, and the heating methods of cast iron and carbon steel brazing.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002186
EISBN: 978-1-62708-188-7
Abstract
Magnesium is machined in low-volume production on small, manually operated machine tools and on large, specially built, completely automated transfer machines operating at high production rates. This article focuses on the factors that affect the machining of magnesium. It discusses chip formation and distortion due to thermal expansion, cold work, and clamping and provides information on magnesium-matrix composites. The article describes materials, design, and sharpness as factors for selection of tool for machining magnesium. It illustrates turning and boring, planing and shaping, broaching, drilling, reaming, counterboring, milling, sawing, and grinding operations performed on magnesium. Safety measures related to machining, handling of chips and fines, and fire extinguishing are also discussed.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002148
EISBN: 978-1-62708-188-7
Abstract
A fixture is a special workholding and supporting device designed and built for a particular part or shape that can be made by using standardized components, such as drill bushings, locating buttons, and clamping devices. This article provides a discussion on optimum fixture design and describes the clamping methods, namely, manual clamping, pneumatic clamping, and hydraulic clamping, and their specific principles. It presents an overview on modular fixturing for limited production. The article concludes with information on cost factors in fixturing.