Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Gas nitriding
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006355
EISBN: 978-1-62708-192-4
Abstract
The surface of irons and steels can be hardened by introducing nitrogen (nitriding), nitrogen and carbon (nitrocarburizing), or nitrogen and sulfur (sulfonitriding) into the surface. This article lists the principal reasons for nitriding and nitrocarburizing, and summarizes the typical characteristics of nitriding processes along with a general comparison of carburizing processes in a table. It describes the two most common nitriding methods: gas nitriding and ion (plasma) nitriding. The article discusses the wear behavior of nitrided layers and the wear resistance of selected steels. Rolling-contact fatigue (RCF) occurs in rolling contacts such as bearings, rolls, and gears. The article provides a discussion on rolling-contact fatigue of nitrided steels for aerospace bearing components.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006269
EISBN: 978-1-62708-169-6
Abstract
This article describes the nitriding methods of titanium alloys such as plasma nitriding and gas nitriding. It focuses on the interaction of titanium alloys, interaction of titanium with nitrogen, and the interaction of titanium with oxygen, carbon, and hydrogen. The article provides information on the wear and fatigue properties and corrosion resistance of nitrided titanium alloys, as well as the effect of nitriding on the biocompatibility of titanium. It also compares plasma-nitrided titanium alloys with alloy steels. It concludes with a short discussion on the effect of nitriding on the surface properties of titanium and two-phase α + β alloys.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005958
EISBN: 978-1-62708-168-9
Abstract
This article provides a detailed discussion on the heating equipment used for austenitizing, quenching, and tempering tool steels. These include salt bath furnaces, controlled atmosphere furnaces, fluidized-bed furnaces, and vacuum furnaces. The article discusses the types of nitriding and nitrocarburizing processes and the equipment required for heat treating tool steels to improve hardness, wear resistance, and thermal fatigue. The various nitriding and nitrocarburizing processes covered are salt bath nitrocarburizing, gas nitriding and nitrocarburizing, and plasma nitriding and nitrocarburizing.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005986
EISBN: 978-1-62708-168-9
Abstract
Nitriding is a general term for all processes based on the addition of nitrogen to the surface of steel. When carbon is added along with the nitrogen, the process is called nitrocarburizing. This article provides a detailed discussion on the functional and structural properties of nitrided layers. It describes the structural changes on the surface of carbon steels, alloy steels, and austenitic stainless steels. The article explains the effects of the various nitriding processes, namely, gaseous nitriding, plasma nitriding, gaseous nitrocarburizing, and salt bath nitrocarburizing, on the structure and properties of nitrided layers.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005806
EISBN: 978-1-62708-165-8
Abstract
This article summarizes the terminology for gas reactions, and discusses low-temperature nitriding and nitrocarburizing of stainless steels. It describes the various nitriding processes, namely, high- and low-pressure nitriding, oxynitriding, sulfonitriding, oxysulfonitriding, ferritic nitrocarburizing and austenitic nitrocarburizing. The article includes a discussion on the difficulties in specimen cleaning, importance of furnace purge, uses of pre and post oxidation, depassivation, or activation, and requirements for perfect nucleation in nitriding process. In nitriding, the successful atmosphere control depends on various potentials. The article summarizes the methods of measuring potentials in nitriding and nitrocarburizing, provides useful information on the furnaces used, and the safety precautions to be followed in the nitriding process. It also describes the sample preparation procedures and testing methods to ensure the quality of the sample.