Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 21
Scanning electron microscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006668
EISBN: 978-1-62708-213-6
Abstract
This article provides detailed information on the instrumentation and principles of the scanning electron microscope (SEM). It begins with a description of the primary components of a conventional SEM instrument. This is followed by a discussion on the advantages and disadvantages of the SEM compared with other common microscopy and microanalysis techniques. The following sections cover the critical issues regarding sample preparation, the physical principles regarding electron beam-sample interaction, and the mechanisms for many types of image contrast. The article also presents the details of SEM-based techniques and specialized SEM instruments. It ends with example applications of various SEM modes.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006387
EISBN: 978-1-62708-192-4
Abstract
This article describes the determination of wear loss by measuring either mass change or dimensional change of lubricants and materials. It discusses the principles, advantages and disadvantages of mass loss measures and dimensional measures of wear. The article details wear measurement at the nanoscale, such as atomic force microscopy (AFM) measurement and scanning electron microscopy measurement. It reviews the techniques of wear measurement at the atomic level, namely, transmission electron microscopy (TEM) measurement and AFM combined with TEM measurement.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003755
EISBN: 978-1-62708-177-1
Abstract
This article outlines the beam/sample interactions and the basic instrumental design of a scanning electron microscopy (SEM), which include the electron gun, probeforming column (consisting of magnetic electron lenses, apertures, and scanning coils), electron detectors, and vacuum system. It discusses the contrasts mechanisms used for imaging and analyzing materials in the SEM. These include the topographic contrast, compositional contrast, and electron channeling pattern and orientation contrast. Special instrumentation and accessory equipment used at elevated pressures and during the X-ray microanalysis are reviewed. The article also provides information on the sample preparation procedure and the materials applications of the SEM.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003795
EISBN: 978-1-62708-177-1
Abstract
Microstructural analysis reveals many important details about the qualities and capabilities of high-performance ceramics. This article explains how to prepare ceramic samples for imaging and the imaging technologies normally used. It describes sectioning, mounting, grinding, and polishing as well as ceramographic etching. It discusses common imaging approaches, including scanning electron microscopy and thin-section polarized light techniques, a type of optical microscopy. The article also addresses microstructural classification, examining detailed micrographs from samples of aluminum oxide, zirconium dioxide, aluminum nitride, silicon carbide, and piezoelectric ceramics.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003757
EISBN: 978-1-62708-177-1
Abstract
This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis, as applied to microscopy of materials. The article describes the basic concepts of sampling and resolution and quantization of light microscopy, scanning electron microscopy, and transmission electron microscopy. It discusses the acquisition of a digital image that accurately represents the sample under observation and output of the image to a printer. The methods used to enhance the digital image and to extract quantitative information are also described. Different types of image segmentation, namely, adaptive segmentation and contour-based segmentation, are reviewed. The article also presents case studies on the application of image processing and analysis to materials characterization.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003788
EISBN: 978-1-62708-177-1
Abstract
Microstructural analysis of specialized types of magnetic materials is centered on the examination of optical, electron, and scanning probe metallographic techniques unique to magnetic materials. This article provides a comprehensive overview of magnetic materials, their characteristics and sample preparation procedures. It reviews the methods pertaining to the microstructural examination of bulk magnetic materials, including microscopy techniques specified to magnetic materials characterization, with specific examples. The techniques used in the study of magnetic domain structures (microstructure) include the magneto-optical Kerr method, the Faraday method, the Bitter technique, scanning electron microscopy (magnetic contrast Types I and II), scanning electron microscopy with polarization analysis, Lorentz transmission electron microscopy, and magnetic force microscopy. The article also illustrates the microstructure of different types of soft magnetic material and permanent magnets.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003680
EISBN: 978-1-62708-182-5
Abstract
Anodizing is one of the most common surface treatments of aluminum and is performed for corrosion protection. This article describes the structure and growth characteristics of the types of anodic oxide films such as a barrier-type oxide film and a porous-type anodic oxide film. It discusses each step involved in the anodizing process of an aluminum or aluminum alloy specimen. The anodizing process includes pretreatments (degreasing, etching, and polishing), anodizing, coloring, and sealing. The article provides an observation of the morphology of the anodic oxide films by transmission electron microscopy and the scanning electron microscopy for testing properties of anodic oxide films.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003644
EISBN: 978-1-62708-182-5
Abstract
This article reviews the fundamentals of electrochemical corrosion test methods. The features and requirements of the instrumentation needed for an electrochemical test are briefly discussed. The article provides a discussion on the various electrochemical techniques and tests available for laboratory studies of corrosion phenomena. The techniques and tests include no-applied-signal tests, small-signal polarization tests, large-signal polarization tests, scanning electrode techniques, and miscellaneous techniques.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
Abstract
This article reviews the abrasive and adhesive wear failure of several types of reinforced polymers, including particulate-reinforced polymers, short-fiber reinforced polymers (SFRP), continuous unidirectional fiber reinforced polymers (FRP), particulate-filled composites, mixed composites (SFRP and particulate-filled), unidirectional FRP composites, and fabric reinforced composites. Friction and wear performance of the composites, correlation of performance with various materials properties, and studies on wear-of failure mechanisms by scanning electron microscopy are discussed for each of these types.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003226
EISBN: 978-1-62708-199-3
Abstract
Fractography is the systematic study of fractures and fracture surfaces. It is a useful tool in failure analysis and provides a means for correlating the influence of microstructure on the fracture mode of a given material. This article discusses the preservation, preparation, and photography of fractured parts and surfaces, and describes some of the more common fractographic features revealed by light microscopy, including tensile-fracture surface marks in unnotched specimens, fatigue marks, and structural discontinuities within the metal. The article also explains how to interpret fracture information contained in optical and scanning-electron microscope fractographs.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
Abstract
Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies, namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis detection threshold and precision, limitations, sample requirements, and the capabilities of related techniques.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003253
EISBN: 978-1-62708-199-3
Abstract
This article describes the operation and capabilities of surface analysis methods of metals, including scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, secondary ion mass spectroscopy, and X-ray photoelectron spectroscopy. It provides information on the capabilities, typical uses, spatial resolution, elemental analysis detection threshold and precision, limitations, sample requirements, and operating principles of the scanning auger microprobe.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001835
EISBN: 978-1-62708-181-8
Abstract
Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging and analytical capabilities, specimen preparation, and the interpretation of fracture features. SEM can be subdivided into four systems, namely, illuminating/imaging, information, display, and vacuum systems. The article also describes the major criteria and techniques of SEM specimen preparation, and the general features of ductile and brittle fracture modes.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001836
EISBN: 978-1-62708-181-8
Abstract
The application of transmission electron microscope to the study of fracture surfaces and related phenomena has made it possible to obtain magnifications and depths of field much greater than those possible with light (optical) microscopes. This article reviews the methods for preparing single-stage, double-stage, and extraction replicas of fracture surfaces. It discusses the types of artifacts and their effects on these replicas, and provides information on shadowing of replicas. The article concludes with a comparison of the transmission electron and scanning electron fractographs with illustrations.
1