Skip Nav Destination
Close Modal
By
Alan J. Chidester, Craig V. Darragh, Robert C. Hoff, John R. Imundo, James L. Maloney, III ...
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 58
Austempering
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006296
EISBN: 978-1-62708-179-5
Abstract
Cast irons, like steels, are iron-carbon alloys but with higher carbon levels than steels to take advantage of eutectic solidification in the binary iron-carbon system. This article introduces the solid-state heat treatment of iron castings and describes the various processes of heat treatment of cast iron. It provides information on stress relieving, annealing, normalizing, through hardening, and surface hardening of these castings. The article discusses general considerations for the heat treatment of cast iron. Cast irons are occasionally nitrided for various applications with the aim of enhancing surface hardness and corrosion resistance of the products. The article describes molten salt bath cyaniding and ion nitriding of cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006322
EISBN: 978-1-62708-179-5
Abstract
Ductile cast irons are heat treated primarily to create matrix microstructures and associated mechanical properties not readily obtained in the as-cast condition. This article discusses the most important heat treatments of ductile irons and their purposes. International standards of ductile iron provided by ASTM International, the International Organization for Standardization (ISO), and SAE International are presented in a table. The article explains basic structural differences between the ferritic, pearlitic, martensitic, and ausferritic classes. It presents recommended practices for annealing ductile iron castings for different alloy contents and for castings with and without eutectic carbides. The article discusses the induction surface hardening and remelt hardening of ductile iron. It concludes with information on the effect of heat treatment on fatigue strength of ductile iron.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006321
EISBN: 978-1-62708-179-5
Abstract
Gray irons are a group of cast irons that form flake graphite during solidification, in contrast to the spheroidal graphite morphology of ductile irons. This article describes surface hardening of gray irons by flame and induction heating. It provides information on the classification of the gray irons in ASTM specification. The article presents examples that illustrate the use of stress relieving to eliminate distortion and cracking. It describes the three annealing treatments of gray iron: ferritizing annealing, medium (or full) annealing, and graphitizing annealing. The article discusses the parameters of the tensile strength and hardness of a normalized gray iron casting. These include combined carbon content, pearlite spacing, and graphite morphology. The article concludes with a discussion on the induction hardening of gray iron castings.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005937
EISBN: 978-1-62708-168-9
Abstract
Ductile cast irons are heat treated to create matrix microstructures and associated mechanical properties not readily obtained in the as-cast condition. This article provides a detailed account of the general characteristics of ductile irons. It discusses the most important heat treatments of ductile irons, namely, stress relieving, austenitizing, annealing, normalizing, quenching, martempering, austempering, and surface hardening. The article elucidates the effects of these heat treatments on the mechanical properties of the ductile irons.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005978
EISBN: 978-1-62708-168-9
Abstract
The choice of heat treatment depends on the service requirements of a given bearing and how the bearing will be made. This article describes the design parameters, material characteristics required to sustain performance characteristics, metallurgical properties, and dimensional stability. It also provides a description of various extensively-used heat treatment processes, namely, carburizing, carbonitriding, induction surface hardening, and nitriding associated with various bearings. In addition, the article explores the factors to be considered in selecting a process and explains why it is optimum for a specific application.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005942
EISBN: 978-1-62708-168-9
Abstract
Gray irons are a group of cast irons that form flake graphite during solidification, in contrast to the spheroidal graphite morphology of ductile irons. The heat treatment of gray irons can considerably alter the matrix microstructure with little or no effect on the size and shape of the graphite achieved during casting. This article provides a detailed account of classes of gray iron, and heat treating methods of gray irons with examples. These methods include stress relieving, annealing, normalizing, transformation hardening, austenitizing, quenching, austempering, martempering, flame hardening, induction hardening, and nitriding.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005814
EISBN: 978-1-62708-165-8
Abstract
This article describes the mechanisms and characteristics of heat transfer in the quenching of steel. This article describes the characterization of boiling heat transfer, including pool boiling, forced convective boiling, and rewetting, which plays a key role in defining the heat-extraction characteristics of a liquid quenchant. It provides information on heat generated microstructural field evolution and information on the analysis and characterization of heat transfer boundary conditions.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005809
EISBN: 978-1-62708-165-8
Abstract
Press quenching is a specialized quenching technique that can be utilized during heat treatment to minimize distortion of complex geometrical components by using specialized tooling for generating concentrated forces that constrain the movement of the component in a carefully controlled manner. This article provides a detailed account of the fundamental components of quenching machines, including the upright machine section, control panel, lower die table, tooling, and the base. In addition, it summarizes the critical factors affecting component distortion during press-quenching.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005801
EISBN: 978-1-62708-165-8
Abstract
Hardenability of steel depends on carbon content and other alloying elements as well as on the grain size of the austenite phase. This article provides information on the calculation of high-carbon (carburized) steel hardenability. It contains tables that list multiplying factors that are used for the calculation of case hardenability of carburizing steels and the hardenability of high-carbon steels hardened after a prior normalize or quench treatment. The article reviews the derivation and limitations of multiplying factors.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting the choice of these surface-hardening methods.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005790
EISBN: 978-1-62708-165-8
Abstract
This article describes the metallurgy and process specifics of subcritical annealing, which involves heating below the lower critical temperature such that austenite does not form during subcritical annealing. It provides information on the nominal subcritical annealing temperatures of plain carbon, low-alloy and high-alloy steels and temperature-time relations of subcritical annealing. Practical implications for induction annealing and induction normalizing are included. The article concludes by describing induction softening, which softens the threaded area on carburized components such as hypoid pinion gears, to prevent the occurrence of delayed fractures from occurring.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005784
EISBN: 978-1-62708-165-8
Abstract
A wide variety of stop-off technologies for heat treatment are used to selectively prevent the diffusion of carbon and/or nitrogen during atmosphere carburizing, carbonitriding, vacuum carburizing, and various forms of nitriding. In addition to selective stop-off, technologies are also available for scale prevention in open-fired furnaces. This article describes two stop-off technologies, mechanical masking and copper plating, along with stop-off paints/compounds. Prior to the application of stop-off paints, the part surface of the furnaces should be properly cleaned and dried. The article also describes the usage of stop-off paints in different heat treating processes, namely, carburizing and carbonitriding, deep carburizing, vacuum carburizing, nitriding and nitrocarburizing, and plasma nitriding. The article concludes by reviewing the application methods of stop-off paints: brushing, dipping, dispensing, spraying and stamping.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005776
EISBN: 978-1-62708-165-8
Abstract
The liquid nitriding process has several proprietary modifications and is applied to a wide variety of carbon steels, low-alloy steels, tool steels, stainless steels, and cast irons. This article discusses the applications, subclassifications, operating procedures, and maintenance procedures, as well as the equipment used (salt bath furnaces) and safety precautions to be undertaken during the liquid nitriding process. It describes the different types of liquid nitriding process, namely, liquid pressure nitriding, aerated bath nitriding, and liquid nitrocarburizing. Environmental considerations and the increased cost of detoxification of cyanide-containing effluents have led to the development of low-cyanide salt bath nitrocarburizing treatments. The article reviews the wear and antiscuffing characteristics of the compound zone produced in salt baths with the help of Falex scuff test.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005793
EISBN: 978-1-62708-165-8
Abstract
The plasma carburizing process is basically a low-pressure carburizing process making use of a high-voltage electrical field applied between the load to be treated and the furnace wall producing activated and ionized gas species responsible for carbon transfer to the workpieces. This article begins with an overview of the theoretical background and the range and limitations of glow-discharge plasma. It describes the plasma carburizing process, which is carried out with methane or propane. Plasma carburizing processes of sinter metals and stainless steels, and the influence of current pulse length on carbon input of low-pressure carburizing process are also described. The article presents the basic requirements and process parameters to be considered in plasma carburizing equipment. It also exemplifies a still-working plasma process in industrial measure.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005777
EISBN: 978-1-62708-165-8
Abstract
This article provides an overview of surface contaminants that may affect the heat treatment processes and end-product quality. It presents information on the chemicals used to clean different surface contaminants of steels. The article discusses three types of cleaning methods, namely, mechanical, chemical, and electrochemical and their effectiveness and applicability. The mechanical cleaning methods include grinding, brushing, steam or flame jet cleaning, abrasive blasting, and tumbling. Solvent cleaning, emulsion cleaning, alkaline cleaning, acid cleaning, pickling, and descaling are chemical cleaning methods. The electrochemical cleaning methods include electropolishing, electrolytic alkaline cleaning, and electrolytic pickling. The article provides information on cleanliness measurement methods such as qualitative tests and quantitative tests to ensure product quality. Health hazards that may be associated with each cleaning method and the general control measures to be used for each hazard are tabulated.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005810
EISBN: 978-1-62708-165-8
Abstract
This article provides a detailed discussion on the factors involved in the selection of steels for austempering, including section thickness limitations of steel parts and modifications of austempering practice. The selection of steel for an austempered component is based on the processing characteristics of the heat treating equipment employed. It is also based on the hardenability and transformation characteristics of the steel alloy as indicated by time-temperature-transformation and isothermal-transformation diagrams. The article contains tables that compare the dimensional changes that occur in stabilizer bars as a result of oil quenching and tempering with those that resulted from austempering. It also discusses the production applications of austempering and the problems encountered in austempering together with their solutions.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005794
EISBN: 978-1-62708-165-8
Abstract
The fluidized bed provides a means for exchanging heat between a metal part, the solid particles, and the fluidizing gas and which is viable for quenching. This article briefly considers the design aspects of the gas distributor, plenum, container, immersed cooling tubes and surface air spray cooling system in the quenching fluidized bed. It describes the fundamental factors affecting quenching power of the fluidized beds, namely, particle size, particle material, fluidizing gas composition, fluidizing gas flow rate, bed temperature and pressure, and the arrangement of quenched parts with respect to one another and to the bed. The article discusses the advantages, disadvantages, various applications and processes, including conventional batch quenching, two-step batch quenching, and continuous quenching of fluidized bed quenching, in detail.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005787
EISBN: 978-1-62708-165-8
Abstract
Steels may be annealed to facilitate cold working or machining, to improve mechanical or electrical properties, or to promote dimensional stability. This article, using iron-carbon phase diagram, describes the types of annealing processes, namely, subcritical annealing, intercritical annealing, supercritical or full annealing, and process annealing. Spheroidizing is performed for improving the cold formability of steels. The article provides guidelines for annealing and tabulates the critical temperature values for selected carbon and low-alloy steels and recommended temperatures and time cycles for annealing of alloy steels and carbon steel forgings. Different combinations of annealed microstructure and hardness are significant in terms of machinability. Furnaces for annealing are of two basic types, batch furnaces and continuous furnaces. The article concludes with a description of the annealing processes for steel sheets and strips, forgings, bars, rods, wires, and plates.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005798
EISBN: 978-1-62708-165-8
Abstract
This article presents the different hardness test methods used to measure the effectiveness of surface carbon control in carburized parts of steel. Common test methods include Rockwell hardness measurements, superficial Rockwell 15N testing, and microhardness testing. The article provides information on the microscopic method used to detect smaller variations in carbon content, and reviews consecutive cuts analysis and spectrographic analysis that are used to accurately evaluate the carbon concentration profile of carburized parts. It describes procedures of and precautions to be undertaken during shim stock analysis, which is used to measure the atmosphere carbon potential. The article includes a discussion on the electromagnetic nondestructive tests that are used to evaluate the case depth of case-hardened parts.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005788
EISBN: 978-1-62708-165-8
Abstract
Inverse hardening a steel of adequate hardenability requires a workpiece of sufficiently large cross section, an appropriate cooling medium, and the right quenching conditions. This article explains the Temperature Gradient Quenching Analysis System (TGQAS), which can measure, record, and evaluate all quenching processes in common use, describing their heat extraction dynamics by corresponding thermodynamic functions. It discusses the metallurgical aspects of steels with an emphasis on two different processes, namely, heat extraction (a thermodynamic process) and microstructural transformation (a metallurgical process) that are initiated at the moment when the austenitized workpiece is immersed in the quenchant. The article describes the uses of polyalkylene glycol copolymer and the effect of hardness and fatigue resistance on AISI 4140 type steel.