Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Electrometric titration
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006679
EISBN: 978-1-62708-213-6
Abstract
This article describes various methods of electrochemical analysis, namely coulometry, electrogravimetry, voltammetry, electrometric titration, and nanometer electrochemistry. The discussion covers the general uses, sample requirements, application examples, advantages, and limitations of these methods. Some of the factors pertinent to electrochemical cells are also provided. In addition, the article provides information on various potentiometric membrane electrodes used to quantify numerous ionic and nonionic species.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001743
EISBN: 978-1-62708-178-8
Abstract
Electrogravimetry is a method used to separate and quantify ions of a substance, usually a metal. Quantification of these ions primarily depends on the rate of movement of charged species (ions) in an electric field. This article details the various types of electrometric titrations, namely, conductometric titration, oscillometric (high frequency) titration, potentiometric titration, amperometric titration, biamperometric titration, bipotentiometric titration, and coulometric titration. It also provides a brief outline of the applications of electrometric titrations.