Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-13 of 13
Plasma spray coating
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006301
EISBN: 978-1-62708-179-5
Abstract
This article describes some examples of the different welding processes for gray, ductile, and malleable irons. These processes include fusion welding, repair welding, shielded metal arc welding, gas metal arc welding, flux cored arc welding, gas tungsten arc welding, submerged arc welding, oxyfuel welding, and braze welding. The article discusses various special techniques, such as groove-face grooving, studding, joint design modifications, and peening, for improving the strength of a weld or its fitness for service. The article describes other fusion welding methods such as electrical resistance welding and thermite welding. It reviews thermal spraying processes, such as flame spraying, arc spraying, and plasma spraying, of a cast iron.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005728
EISBN: 978-1-62708-171-9
Abstract
Materials resulting from thermal spray processes are often different from their wrought, forged, and cast counterparts. Assessing the usefulness of thermal spray coatings requires understanding, developing, and using appropriate testing and characterization methods that are generally borrowed from other materials science disciplines. This article focuses on commonly used testing and characterization methods: metallography, image analysis, hardness, tensile adhesion testing, corrosion testing, x-ray diffraction, non-destructive testing, and powder characterization. It provides information on how the materials themselves respond to the various test methods. The article focuses on the test methods themselves, including those test parameters that can be varied and the influence of each on the results obtained.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005743
EISBN: 978-1-62708-171-9
Abstract
Thermal spray coatings, along with certain proprietary sealants, are widely used in the paper manufacturing industry for corrosion and wear resistance and to impart special surface characteristics. This article discusses the steps involved in the paper manufacturing process. Most modern papermaking machines are based on variations of the Fourdrinier machine. The article describes four operational sections of the machine: forming, press, drying, and calendar. It provides an overview of the machine components where thermal spray coatings are used, namely, digesters, blow tanks, suction roll, center press rolls, yankee dryer rolls, calendar rolls, doctor/scalping blades, and cutting equipment.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005727
EISBN: 978-1-62708-171-9
Abstract
This article discusses three types of powder-feeder systems that are commonly used throughout the thermal spray (TS) industry: gravity-based devices, rotating wheel devices, and fluidized-bed systems. It provides information on the various mechanical methods for producing powders, namely, crushing, milling, attriting, and machining. The article describes two prime methods of agglomeration. One method uses a binder by way of agglutination, while the other relies on a sintering operation. The article discusses the technology and principles of the processes that relate to thermal spraying, and offers an understanding for choosing particular feedstock materials that are classified based on the thermal spray process, material morphology, chemical nature of the material, and applications. Sieving, the most common method of separating powders into their size fractions, is also reviewed. The article also provides information on the topical areas and precautions to be undertaken to protect the operator from safety hazards.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
Abstract
This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric plasma-sprayed abradable powders. Three classic examples of flame spray abradables are nickel-graphite powders, NiCrAl-bentonite powders, and NiCrFeAl-boron nitride powders. The article provides information on various abradable coating testing procedures, namely, abradable incursion testing; aging, corrosion, thermal cycle and thermal shock testing; hardness testing; and erosion resistance testing.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005718
EISBN: 978-1-62708-171-9
Abstract
This article presents the major thermal spray processes and their subsets, presenting each of the commercially significant processes together with some of their important variations. Each process is presented along with the attributes that influence coating structure and performance. The article summarizes the essential equipment components and necessary controls. The various thermal spray processes are conventional flame spray, detonation gun, high-velocity oxyfuel spray, electric arc spray, and plasma arc spray. Other processes, such as cold spray, underwater plasma arc spray, and extended-arc and other high-energy plasma arc spray, are also considered.
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005656
EISBN: 978-1-62708-198-6
Abstract
Porous coatings are used in the field of joint replacement, particularly in cementless total hip/knee arthroplasty. This article reviews the offerings and biomaterial properties in orthopedic surgery for the contemporary class of highly porous metals. It describes the traditional porous metals/coatings having an open-cell structure, high porosity, and a microstructure resembling that of the cancellous bone. The traditional porous metal/coating includes fiber-metal mesh, cobalt-chromium (CoCr) beads, cancellous-structured titanium, and plasma spray. The article discusses other porous metals/coatings that have been developed due to the limitations of traditional porous metals for numerous open-cell-structured metals, such as titanium-base foams and trabecular metals.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
Abstract
This article describes the four major conditions that can cause beryllium to corrode in air. These include beryllium carbide particles exposed at the surface; surface contaminated with halide, sulfate, or nitrate ions; surface contaminated with other electrolyte fluids; and atmosphere that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled elements and major impurities are tabulated. The article discusses the in-process problems and procedures that are common but avoidable when processing beryllium and aluminum-beryllium composites. It also describes the types of coatings used on beryllium and aluminum-beryllium. These include chemical conversion coatings, anodized coatings, plated coatings, organic coatings, and plasma-sprayed coatings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001300
EISBN: 978-1-62708-170-2
Abstract
This article describes the structure of coatings produced by plasma spraying, vapor deposition, and electrodeposition processes. The main techniques used for microstructure assessment are introduced. The relationship between the microstructure and property is also discussed. The experimental techniques for microstructural characterization include metallographic technique, X-ray diffraction, electron, microscopies, and porosimetry.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
Abstract
This article introduces thermal spray coatings and describes the various types of coating processes and coating devices, including the flame spray, electric-arc spray, plasma spray, transferred plasma arc, high-velocity oxyfuel, and detonation gun. It provides information on the surface preparation methods and finishing treatments of coated parts. The article also explains the tests to evaluate the coating quality and the effects of coating structures and mechanical properties on coated parts. It concludes with a discussion on the uses of thermal spray coatings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001225
EISBN: 978-1-62708-170-2
Abstract
Molten salt baths are anhydrous, fused chemical baths used at elevated temperatures for a variety of industrial cleaning applications. This article discusses their applications in paint stripping, polymer removal, casting cleaning, glass removal, and plasma/flame spray removal. It provides an overview of the basic design and safety considerations of the salt bath equipment and describes the environmental impact of molten salt bath cleaning.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001280
EISBN: 978-1-62708-170-2
Abstract
Ceramic coatings are applied to metals to protect them against oxidation and corrosion at room temperature and at elevated temperatures. This article provides a detailed account of the factors to be considered when selecting a ceramic coating and describes the characteristics of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor streaming, troweling, and electrophoresis. The article also includes information on the evaluation of the quality of ceramic coatings.