Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 91
Micrograph
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005977
EISBN: 978-1-62708-168-9
Abstract
Stainless steels are essential for the modern industrial civilization because of their corrosion resistance, especially in the chemical, petrochemical, and food industries. This article discusses the classification of the various types of stainless steels, including martensitic, ferritic, austenitic, duplex (ferritic-austenitic), and precipitation-hardening stainless steels. It presents a checklist of characteristics to be considered in selecting the proper type of stainless steel for a specific application. The article also outlines the need to promote the formation of an effective protective passive layer in stainless steels. It discusses hardness, fatigue and fretting properties, tribological properties, wear resistance, and corrosion-wear process of the S-phase layer. The article describes two thermochemical nitriding techniques of stainless steels: plasma-assisted nitriding techniques and non-plasma assisted nitriding processes. It also describes the difficulties in stainless steel nitriding/carburizing.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003764
EISBN: 978-1-62708-177-1
Abstract
This article is a comprehensive collection of tables listing: dangerous reactions of chemicals and designations of etchants; chemical-polishing solutions for irons and steels and nonferrous materials; attack-polishing solutions, macrostructure etchants for iron and steel; and major microstructure etchants for common phases and constituents in ferrous materials.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003790
EISBN: 978-1-62708-177-1
Abstract
This article begins with a description of indirect and direct semisolid metalworking processes. It then provides information on alloy compositions of common aluminum semisolid metalworking alloys and primary die-cast magnesium alloys in a tabular form. The article describes the macroscopic examination of defects, which occur in semisolid metalworking with illustrations. It discusses the macroscopic examination of gating systems and semisolid feedstocks. The article also provides information on feedstock microstructures, direct semisolid metalworking component microstructures, and indirect semisolid metalworking component microstructures of series 300 aluminum casting alloys and magnesium die-casting alloys.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003772
EISBN: 978-1-62708-177-1
Abstract
This article describes the microstructure of copper alloys, including copper-zinc (brasses), bronzes, copper-nickel, and copper-nickel-zinc, and examines the effect of oxygen content on alloy phases observed in different product forms. The article also discusses inclusions, etchants, and the effect of composition and processing on grain structure and growth rates.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003728
EISBN: 978-1-62708-177-1
Abstract
This article describes the development of heat-resistant titanium-base alloys and their classification into several microstructure categories based on their strengthening mechanisms. It explains the phase transformation in titanium-aluminum-base alloys and two peritectic reactions that take place in the titanium-aluminum system. The article also describes two approaches for controlling the orientation of the high-temperature alpha phase to achieve the required lamellar orientation by directional solidification in order to improve the strength and ductility of titanium-aluminum alloys. One approach is by seeding the alpha phase in the alloys, and the other is without seeding, by controlling the solidification path of alloys through appropriate alloying. The article discusses the grain refinement technique used to improve the ductility of cast titanium-aluminum alloys to a level of above 1" at room temperature and reasonable room temperature ductility in the as-cast condition. Finally, it provides information on the microstructures produced through various near-net shape manufacturing processes.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003755
EISBN: 978-1-62708-177-1
Abstract
This article outlines the beam/sample interactions and the basic instrumental design of a scanning electron microscopy (SEM), which include the electron gun, probeforming column (consisting of magnetic electron lenses, apertures, and scanning coils), electron detectors, and vacuum system. It discusses the contrasts mechanisms used for imaging and analyzing materials in the SEM. These include the topographic contrast, compositional contrast, and electron channeling pattern and orientation contrast. Special instrumentation and accessory equipment used at elevated pressures and during the X-ray microanalysis are reviewed. The article also provides information on the sample preparation procedure and the materials applications of the SEM.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003729
EISBN: 978-1-62708-177-1
Abstract
Computational modeling assists in addressing the issues of solid/liquid interface dynamics at the microlevel. It also helps to visualize the grain length scale, fraction of phases, or even microstructure transitions through microstructure maps. This article provides a detailed account of the general capabilities of the various models that can generate microstructure maps and thus transform the computer into a dynamic microscope. These include standard transport models, phase-field models, Monte Carlo models, and cellular automaton models.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003780
EISBN: 978-1-62708-177-1
Abstract
This article discusses the principles of physical metallurgy and metallography of depleted uranium. It describes the techniques involved in the preparation of thin foils for transmission electron microscopy and illustrates the resulting microstructure of uranium and uranium alloys, with the aid of black and white images. The article also provides information on the applications of etching and examination of uranium alloys, at both macro and micro scales, in characterizing the grain structures, segregation patterns, inclusions, and the metal flow geometries produced by solidification and mechanical working processes.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
Abstract
This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003747
EISBN: 978-1-62708-177-1
Abstract
This article illustrates how objective experiments and comparisons can be used to develop surface preparation procedures for metallographic examination of structural features of metals. These procedures are classified as machining, grinding and abrasion, or polishing. The article describes the abrasion artifacts in austenitic steels, zinc, ferritic steels, and pearlitic steels, and other effects of abrasion damages, including flatness of abraded surfaces and embedding of abrasive. Different polishing damages, such as degradation of etching contrast and scratch traces, are reviewed. The article explains the final-polishing processes such as skid polishing, vibratory polishing methods, etch-attack and electromechanical polishing, and polishing with special abrasives. An overview of special polishing techniques for unusual materials such as very hard and very soft materials is provided. The article concludes with a discussion on semiautomatic preparation procedures, providing information on procedures based on the use of diamond abrasives charged in a carrier paste and in a suspension.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003791
EISBN: 978-1-62708-177-1
Abstract
This article reviews how process variations influence the characteristics of thermal spray coatings. It describes various specimen preparation techniques, which allow accurate microstructural analysis. These techniques include sectioning, cleaning, mounting, planar grinding, fine grinding, rough polishing, and etching. The article provides information on the problems associated with specimen preparation. It concludes with a discussion on the various methods of analysis for thermal spray coatings.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003720
EISBN: 978-1-62708-177-1
Abstract
This article provides an overview of the origin of metallography. It presents information on how to select a section from a specimen and prepare it for macroscopic analysis. The article describes the macroscopic analysis of steel fracture surfaces with emphasis on ductile, brittle, and fatigue fracture with illustrations. It discusses microanalysis with a focus on the method of light microscopy and includes information of scanning electron microscope in fractography. The article also explains the characteristics of solidification, transformation, deformation structures, and discontinuities that are present in a microstructure. It concludes with information on image analysis.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009072
EISBN: 978-1-62708-177-1
Abstract
This article describes how composite specimens are sectioned, documented, and labeled during sample preparation. The mounting procedures for the specimen are summarized. The article explains sample clamping, which involves not mounting the specimens using an adhesive or casting resin and corresponds to clamped samples used in automated polishing heads. It details that cavity molds involve mounting the composite specimens using a casting resin in a preset mold. The article also discusses the mounting of composite materials for hand polishing.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003736
EISBN: 978-1-62708-177-1
Abstract
Martensite is a metastable structure that forms during athermal (nonisothermal) conditions. This article reviews the crystallographic theory, morphologies, orientation relationships, habit plane, and transformation temperature of ferrous martensite microstructures. It examines the stages of the tempering process involved in ferrous martensite. The article also describes the formation of the martensite structure in nonferrous systems. It concludes with a discussion on shape memory alloys.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003773
EISBN: 978-1-62708-177-1
Abstract
This article describes the various specimen preparation procedures for lead, lead alloys, and sleeve bearings, including sectioning, mounting, grinding, polishing, and etching. The microscopic examination and microstructures of lead and lead alloys are discussed. The article also provides information on the microstructures of sleeve bearing materials.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003730
EISBN: 978-1-62708-177-1
Abstract
This introductory article provides basic information on the various aspects of solid-state transformation: multiphase microstructures, substructures, and crystallography, which assist in characterizing the morphology of phase transformations. It contains a flowchart that illustrating the classification of transformations by growth processes.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
Abstract
This article discusses the specimen preparation techniques for zinc and its alloys and zinc-coated specimens, namely, sectioning, mounting, grinding and polishing, and etching. It describes the characteristics of lead, cadmium, iron, copper, titanium, aluminum, magnesium, and tin, which are present in the microstructure of zinc alloys. The article also provides information on microexamination that helps to determine the dendrite arm spacing, as well as the grain size, grain boundaries, and grain counts.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
Abstract
Metallography plays a significant role in the quality control of metals and alloys used in the manufacture of implantable surgical devices. This article provides information and data on metallographic techniques along with images showing the microstructure of biomedical orthopedic alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009073
EISBN: 978-1-62708-177-1
Abstract
Rough grinding and polishing of specimens are required to prepare fiber-reinforced composite samples for optical analysis. This article discusses the consumables, process variables, and the equipment that influence the sample preparation procedure. It describes the hand and automated grinding methods. The article summarizes the rough and final polishing steps for both hand and automated techniques. Common artifacts that may be created during grinding and polishing steps of composite samples are reviewed. These include scratches, fiber pull-out, matrix smears, streaks, erosion of different phases, and fiber and sample edge rounding and relief.