Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-16 of 16
Hot dip coating
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006335
EISBN: 978-1-62708-179-5
Abstract
Coating of cast irons is done to improve appearance and resistance to degradation due to corrosion, erosion, and wear. This article describes inorganic coating methods commonly applied to cast irons. The coating methods include plating, hot dip coating, conversion coating, diffusion coating, cladding, porcelain enameling, and thermal spray. Organic coatings have a wide variety of properties, but their primary use is for corrosion resistance combined with a pleasing colored appearance. The article discusses the various types of organic coatings applied to cast irons. Practically any degree of smoothness or roughness and requirement for color and gloss can be filled by organic coatings. The article describes abrasive blast cleaning, abrasive waterjet cleaning and finishing, vibratory finishing, barrel finishing, and shot peening for processing iron castings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006027
EISBN: 978-1-62708-172-6
Abstract
This article provides a brief discussion on the common types of overlayers that can be used on a metal surface to protect it from corrosion. These overlayers include phosphate, chromate, and chromate-free conversion coatings; hot dip galvanizing; cementitious linings; glass and porcelain enamels; electroplating; thermal spray coatings; and rubber linings.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
Abstract
Coatings and other surface modifications are used for a variety of functional, economic, and aesthetic purposes. Two major applications of thermal spray coatings are for wear resistance and corrosion resistance. This article discusses thermal (surface hardening) and thermochemical (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004126
EISBN: 978-1-62708-184-9
Abstract
This article focuses on the various coatings used on Department of Defense (DoD) systems. These include electroplated coatings; conversion coatings; supplemental oils, waxes, and lubricants; organic paint coatings; and other finishes such as vacuum deposits, mechanical plating, thermal spray coatings, and hot-dip coatings. The article also lists the test requirements and time to failure of the coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004107
EISBN: 978-1-62708-184-9
Abstract
A sacrificial coating applied to a steel substrate can add 20 years or more of life to the substrate, depending on its thickness and composition. Different techniques to apply sacrificial coatings offer various characteristics that contribute to corrosion resistance. This article discusses thermal spray, hotdipping, and electroplating processes used to apply coatings in steel structures. It describes the corrosion attributes of the resulting coatings and discusses the methods of protecting steel from corrosion using aluminum and zinc coatings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003688
EISBN: 978-1-62708-182-5
Abstract
This article describes the basic principles, processing steps, and benefits of continuous hot dip coatings. It provides useful information on the principal types of coatings applied in the hot-dip process. The types of coatings include galvanized coatings, galvannealed coatings, 55Al-Zn coating, 95Zn-Al coating, and aluminized coatings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003689
EISBN: 978-1-62708-182-5
Abstract
This article provides a discussion on the two basic steps of the batch hot dip galvanizing process: surface preparation and galvanizing. It describes the factors affecting coating thickness and coating structure. The mechanical properties of the coating and steel substrate are also discussed. The article also provides information on the various factors that should be considered before galvanizing a material. It examines the performances of galvanized coatings in corrosion service. The joining of galvanized structural members by bolting and welding is also discussed. The article describes the synergistic effects of galvanized and painted systems. It explains the applications of hot dip galvanized steel. The article concludes with information on pertinent galvanizing specifications under the authority of the American Society for Testing and Materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003217
EISBN: 978-1-62708-199-3
Abstract
There are various coating techniques in practice to prevent the deterioration of steels. This article focuses on dip, barrier, and chemical conversion coatings and describes hot-dip processes for coating carbon steels with zinc, aluminum, lead-tin, and other alloys. It describes continuous electrodeposition for steel strip and babbitting and discusses phosphate and chromate conversion coatings as well. It also addresses painting, discussing types and selection, surface preparation, and application methods. In addition, the article describes rust-preventive compounds and their application. It also provides information on weld-overlay and thermal spray coating, porcelain enameling, and the preparation of enamel frits for steels. The article closes by describing methods and materials for ceramic coating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and secondary production of tin and explains the uses of tin in coating, namely tinplating, electroplating, and hot dip coatings. It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid alloys, type metals, copper alloys, dental alloys, cast irons, titanium alloys, and zirconium alloys. Finally, it presents a short note on the applications of tin powder and corrosion resistance of tin.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002466
EISBN: 978-1-62708-194-8
Abstract
Surface treatments are used in a variety of ways to improve the material properties of a component. This article provides information on surface treatments that improve service performance so that the design engineer may consider surface-engineered components as an alternative to more costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains surface hardening and diffusion coatings such as carburizing, nitriding, and carbonitriding. The article also tabulates typical characteristics of carburizing, nitriding, and carbonitriding diffusion treatments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001269
EISBN: 978-1-62708-170-2
Abstract
This article focuses on the various techniques for removing contaminants in the surface preparation of steel for hot-dip coatings: wet cleaning methods, including alkaline cleaning, electrolytic cleaning, chemical pickling, and electrolytic pickling; flame cleaning and furnace-atmosphere techniques, such as Sendzimir oxidation/reduction method; other specialized methods, namely, fluxes, mechanical cleaning, and ultrasonic methods; or a combination of these.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001272
EISBN: 978-1-62708-170-2
Abstract
This article commences with a description of the applications of galvanized coatings and provides information on metallurgical characteristics, such as coating thickness and alloying elements. It examines the effect of galvanizing process on the mechanical properties of steels and briefly describes the cleaning procedures of iron and steel pieces, before galvanizing. The article discusses the different types of conventional batch galvanizing practices. Information on the galvanizing of silicon-killed steels is also presented. The article concludes with helpful information on batch galvanizing equipment and galvanizing post treatments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
Abstract
This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting life when resistance to corrosion, wear, and erosion is required. The common methods include electroplating, electroless plating, hardfacing, weld cladding, surface hardening, porcelain enameling, and organic coatings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001270
EISBN: 978-1-62708-170-2
Abstract
This article discusses the processes involved in continuous hotdip coating of steel sheets, namely, hot and cold line processing, surface preparation, and post treatment. It outlines the properties and microstructures of metals and their alloys used in this process. The coatings considered in this article include metal coatings, such as zinc coatings, and alloy coatings, such as zinc-iron, types 1 and 2 aluminum, Zn-5AI, Zn-55AI, and lead-tin coatings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
Abstract
This article discusses the classifications, compositions, properties, advantages, disadvantages, limitations, and applications of the most commonly used methods for surface engineering of carbon and alloy steels. These include cleaning methods, finishing methods, conversion coatings, hot-dip coating processes, electrogalvanizing, electroplating, metal cladding, organic coatings, zinc-rich coatings, porcelain enameling, thermal spraying, hardfacing, vapor-deposited coatings, surface modification, and surface hardening via heat treatment.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001012
EISBN: 978-1-62708-161-0
Abstract
Steel sheet is often coated in coil form prior to fabrication to save time, reduce production costs, and streamline operations. This article examines the most common precoating methods and provides a metallurgical understanding of how they impact the manufacturability, performance, and service life of the host material. The article covers metallic coatings, including zinc, aluminum, zinc-aluminum alloys, tin, and terne; pretreatment or phosphate coatings; and preprimed and painted finishes based on organic coatings.