Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Glow discharge sputtering
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0007039
EISBN: 978-1-62708-170-2
Abstract
Sputtering is a nonthermal vaporization process in which atoms are ejected from the surface of a solid by momentum transfer from energetic particles of atomic or molecular size. Ionized gases in plasma nitriding chambers often possess enough energy to sputter atoms from workload, fixturing, and racking surfaces that are then redeposited to the benefit or detriment of the nitriding process. This article explains how and why sputtering occurs during plasma nitriding and how to recognize and control its effects. It reviews the factors that influence the intensity of sputtering and its effects, whether positive or negative, on treated parts. It also provides recommendations for improving outcomes when nitriding titanium alloys, ferrous metals, particularly stainless steels, and components with complex geometries.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001288
EISBN: 978-1-62708-170-2
Abstract
Sputtering is a nonthermal vaporization process in which the surface atoms are physically ejected from a surface by momentum transfer from an energetic bombarding species of atomic/molecular size. It uses a glow discharge or an ion beam to generate a flux of ions incident on the target surface. This article provides an overview of the advantages and limitations of sputter deposition. It focuses on the most common sputtering techniques, namely, diode sputtering, radio-frequency sputtering, triode sputtering, magnetron sputtering, and unbalanced magnetron sputtering. The article discusses the fundamentals of plasma formation and the interactions on the target surface. A comparison of reactive and nonreactive sputtering is also provided. The article concludes with a discussion on the several methods of process control and the applications of sputtered films.