Skip Nav Destination
Close Modal
By
Wenbin Li, Ming C. Leu
By
Todd Hawkins, Jorma Virtanen, Charles Simpson, Joshua Armstrong
By
John A. Shields, Jr., Steven G. Caldwell
By
Vladimir Duz, Vladimir Moxson, Mykhailo Matviychuk, M. Ashraf Imam
By
Roland Warzel, III
By
V. Samarov, D. Seliverstov, F.H. (Sam) Froes
By
Denis Christopherson, Jr.
By
Don H. Hashiguchi, Mark Svilar, Aaron B. Sayer, Amanda L. Morales
By
Noppakun Sanpo, James Wang, Christopher C. Berndt
By
Charles D. Nelson, Wayne Rasmussen, John Jorstad
By
Brian V. Smith
By
Leander F. Pease, III, Douglas L. Pease
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 27
Ceramic processing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Material Extrusion Based Ceramic Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006562
EISBN: 978-1-62708-290-7
Abstract
This article is a review of the material extrusion-based ceramic additive manufacturing (MECAM) processes. The discussion begins with details of extrusion with filament and paste, covering the most popular variants of paste extrusion-based MECAM techniques that can be differentiated based on paste type and the method of shape retention of the deposited layer: extrusion freeforming, robocasting ceramic on-demand extrusion, and freeze-form extrusion fabrication. The article then focuses on post-processing considerations and the mechanical properties of sintered ceramic parts. It concludes with information on innovation opportunities in ceramic additive manufacturing, such as incorporating UV-curing and gelation in the process and producing geometrically complex structures from shapeable green bodies.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006534
EISBN: 978-1-62708-207-5
Abstract
This article describes the direct hot extrusion process and the typical sequence of operations for producing extruded aluminum shapes from soft and medium-grade aluminum alloys, hard alloys, and aluminum-matrix composites. It discusses key process variables, including extrusion speed and exit temperature, and their effect on product quality. The article also provides information on extrusion presses, press dies, and tooling, and addresses quality issues such as surface defects, blistering, and internal cracking. It concludes with a discussion on the drawing of solid section and aluminum tube.
Book Chapter
Smart Coatings and Nanotechnology Applications in Coatings
Available to PurchaseSeries: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006012
EISBN: 978-1-62708-172-6
Abstract
Nanotechnology and smart-coating technologies have been reported to show great promise for improved performance in critical areas such as corrosion resistance, durability, and conductivity. This article exemplifies nanofilms and nanomaterials used in coatings applications, including carbon nanotubes, silica, metals/metal oxides, ceramics, clays, buckyballs, graphene, polymers, titanium dioxide, and waxes. These can be produced by a variety of methods, including chemical vapor deposition, plasma arcing, electrodeposition, sol-gel synthesis, and ball milling. The application of nanotechnology and the development of smart coatings have been dependent largely on the availability of analytical and imaging techniques such as Raman spectroscopy, scanning and transmission electron microscopy, atomic force microscopy, and scanning tunneling microscopy.
Book Chapter
Fully Dense Processing of Refractory Metal Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006125
EISBN: 978-1-62708-175-7
Abstract
The residual porosity in sintered refractory metal ingots is usually eliminated by different densification processes, such as thermomechanical processes. This article focuses on thermomechanical processing of tungsten, molybdenum, and tantalum. It provides an overview of liquid-phase sintering of tungsten heavy alloys and describes the infiltration of tungsten and molybdenum for attaining full density. The article concludes by providing information on hot isostatic pressing of refractory metal alloys to full density.
Book Chapter
Pressing and Sintering of Titanium Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006045
EISBN: 978-1-62708-175-7
Abstract
Consolidation of titanium powders at room temperature may be performed by low-cost conventional powder metallurgy processes. This article provides information on various consolidation methods, namely, die pressing, direct powder rolling, and cold isostatic pressing. It also describes the sintering of blended elemental powders, high-strength titanium alloys, and porous material as well as the sintering of titanium powders by microwave heating.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006053
EISBN: 978-1-62708-175-7
Abstract
Consolidation and shaping of grade powders is carried out using several methods, depending on the size, complexity, shape, and quantity of parts required. This article details the powder consolidation methods of carbide powders: uniaxial pressing, cold isostatic pressing, extrusion, green machining, and injection molding.
Book Chapter
High-Temperature Sintering of Ferrous Powder Metallurgy Components
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006110
EISBN: 978-1-62708-175-7
Abstract
High-temperature sintering of ferrous components continues to be important in the powder metallurgy (PM) industry. Improvements in both production rates and properties are possible as sintering temperatures increase above 1120 deg C. This article provides an overview of the different various stages of the sintering process and the physical, chemical, and metallurgical phenomena occur within the mass of metal powder particles. It discusses the four advantages of high-temperature sintering of various ferrous PM materials: improved mechanical properties, improved physical properties, development of liquid phase, and ability to sinter active elements in alloy steels. The article also provides information on three sources of process control requirements, namely, the powder blend, green density, and sintering conditions.
Book Chapter
Fabrication of Near-Net Shape Cost-Effective Titanium Components by Use of Prealloyed Powder and Hot Isostatic Pressing
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006140
EISBN: 978-1-62708-175-7
Abstract
Prealloyed (PA) powder metallurgy is a technique where complex near-net shape titanium aircraft components are fabricated with low buy-to-fly ratios. This article describes the physical principle, mechanism, and simulation and modeling of metal can and hot isostatic pressing (HIP) processes involved in the PA powder metallurgy technique. It discusses the technical problems addressed in shape control and their solutions for understanding the advantages of powder metallurgy HIP.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006117
EISBN: 978-1-62708-175-7
Abstract
Sintering is a thermal treatment process in which a powder or a porous material, already formed into the required shape, is converted into a useful article with the requisite microstructure. Sintering can be classified as solid-state, viscous, liquid-phase, and pressure-assisted (or pressure) sintering. This article provides information on the mechanisms and theoretical analysis of sintering and focuses on the types, mechanisms, process and microstructural variables, computer simulation, stages, and fundamentals of densification and grain growth of solid-state sintering and liquid-phase sintering. It describes the models for viscous sintering and the methods used in pressure-assisted sintering, namely, uniaxial hot pressing, hot isostatic pressing, sinter forging, and spark plasma sintering.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006141
EISBN: 978-1-62708-175-7
Abstract
This article describes part selection, feedstock (powders and binders) characteristics and properties, tool design, and material and tooling for fabrication of metal powder injection molding (MIM) machines. It discusses the process parameters, operation sequence, molding machines, debinding techniques, consolidation (sintering) techniques, advantages, and limitations of MIM.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006074
EISBN: 978-1-62708-175-7
Abstract
This article describes the unique aspects of cold isostatic pressing (CIP) in comparison with die compaction, for powder metallurgy parts. It details the components of CIP equipment, including pressure vessels, pressure generators, and tooling material. The article reviews the part shapes and their influence in determining tap density of the filled mold. It provides a discussion on process parameters, such as dwell time, depressurization rate, evaluation of green strength and density, and thermal processing, and illustrates a process flowchart for the production of CIP parts.
Book Chapter
Machinability of Powder Metallurgy Steels
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006103
EISBN: 978-1-62708-175-7
Abstract
Machinability is more important in extending the applications of powder metallurgy (PM). This article provides an overview of the machining process and machinability measurement of PM steels. It discusses various approaches to improve machinability, including the closure of porosity, green machining, presintering, microcleanliness improvement, free-machining additives, microstructure modification, and improvements in tool materials. The effects of free-machining agents on machinability and the sintered properties of PM steels are also reviewed.
Book Chapter
Beryllium and Aluminum-Beryllium Alloys
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006058
EISBN: 978-1-62708-175-7
Abstract
This article briefly describes the production of beryllium powder and beryllium/beryllium oxide metal-matrix powder. It discusses fully dense consolidation methods: vacuum hot pressing, hot isostatic pressing, and cold isostatic pressing. Secondary fabrication operations of beryllium and aluminum-beryllium alloys such as extrusion, rolling, welding, joining, and machining are discussed. The article discusses quality control and provides information on the structural, optical, and high-purity grades of beryllium.
Book Chapter
Feedstock Material Considerations for Thermal Spray
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005727
EISBN: 978-1-62708-171-9
Abstract
This article discusses three types of powder-feeder systems that are commonly used throughout the thermal spray (TS) industry: gravity-based devices, rotating wheel devices, and fluidized-bed systems. It provides information on the various mechanical methods for producing powders, namely, crushing, milling, attriting, and machining. The article describes two prime methods of agglomeration. One method uses a binder by way of agglutination, while the other relies on a sintering operation. The article discusses the technology and principles of the processes that relate to thermal spraying, and offers an understanding for choosing particular feedstock materials that are classified based on the thermal spray process, material morphology, chemical nature of the material, and applications. Sieving, the most common method of separating powders into their size fractions, is also reviewed. The article also provides information on the topical areas and precautions to be undertaken to protect the operator from safety hazards.
Book Chapter
Diffusion Bonding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005612
EISBN: 978-1-62708-174-0
Abstract
This article describes the solid-phase and liquid-phase processes involved in diffusion bonding of metals. It provides a detailed discussion on the diffusion bonding of steels and their alloys, nonferrous alloys, and dissimilar metals. Ceramic-ceramic diffusion welding and a variation on this process in which ceramic powder compacts are simultaneously sintered and bonded are also discussed.
Book Chapter
Slurry Molding
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005249
EISBN: 978-1-62708-187-0
Abstract
This article discusses slurry molding that encompasses two distinct processes: plaster molding and ceramic molding. Plaster mold casting is a specialized casting process used to produce nonferrous castings that have greater dimensional accuracy, smoother surfaces, and more finely reproduced detail. The article describes three generally recognized plaster mold processes, namely, conventional plaster mold casting, the Antioch process, and the foamed plaster process. Ceramic molding techniques are based on processes that employ permanent patterns and fine-grained zircon and calcined, high-alumina mullite slurries for molding. The Shaw process and the proprietary Unicast processes are also discussed.
Book Chapter
Introduction: Expendable Mold Processes with Permanent Patterns
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005241
EISBN: 978-1-62708-187-0
Abstract
Casting can be done with either expendable molds for one-time use or permanent molds for reuse many times. This article lists the various methods used to fabricate expendable molds from permanent patterns. The methods include molding of sand with clay, inorganic binders, or organic resins; shell molding of sand with a thin resin-bonded shell; no-bond vacuum molding of sand; plaster-mold casting; ceramic-mold casting; rammed graphite molding; and magnetic (no-bond) molding of ferrous shot. The article tabulates a general comparison of casting methods and discusses the basic requirements of foundry molds.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004006
EISBN: 978-1-62708-185-6
Abstract
Hot extrusion is a process in which wrought parts are formed by forcing a heated billet through a shaped die opening. This article discusses nonlubricated and lubricated hot extrusion. The two nonlubricated hot extrusion methods are forward or direct extrusion and backward or indirect extrusion. The article illustrates the significance of extrusion speeds and temperatures in hot extrusion. It describes the basic types of presses used in the hot extrusion of metals. The article provides information on the characterization of extruded shapes and explains the operating parameters, including extrusion velocity, amount of pressure required, and type of lubricant, for successful and efficient hot extrusion. The article concludes with a discussion on applications and design methodology that provides insight into CAD/CAM of extrusion dies.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
Abstract
This article describes die wear and failure mechanisms, including thermal fatigue, abrasive wear, and plastic deformation. It summarizes the important attributes required for dies and the properties of the various die materials that make them suitable for particular applications. Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives of dies: alloying surface treatments, micropeening, and electroplating.
Book Chapter
Metallography and Microstructures of Powder Metallurgy Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003789
EISBN: 978-1-62708-177-1
Abstract
This article provides information on the microstructure of powder metal alloys and the special handling requirements of porous materials. It covers selection, sectioning, mounting, grinding, and polishing, and describes procedures, such as washing, liquid removal, and impregnation, meant to preserve pore structures and keep them open for analysis. The article compares and contrasts the microstructures of nearly 50 powder metal alloys, using them to illustrate the effect of consolidation and compaction methods as well as particle size, composition, and shape. It discusses imaging equipment and techniques and provides data on etchants and etching procedures.
1