Skip Nav Destination
Close Modal
By
Carolyn Carradero Santiago, Eric MacDonald, Jose Coronel, Dominic Kelly, Ryan Wicker ...
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 43
Ultrasonic additive manufacturing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006555
EISBN: 978-1-62708-290-7
Abstract
Additive manufacturing is a collection of manufacturing processes, each of which builds a part additively based on a digital solid model. The solid model-to-additive manufacturing interface and material deposition are entirely computer-controlled. The traditional additive manufacturing applications have been used for low production runs of parts with complex shapes and geometric features. Additive manufacturing is also used for topology optimization and it impacts the process and supply chain. This article discusses processes, including vat photopolymerization, material jetting, powder bed fusion, directed energy deposition, material extrusion, binder jetting, and sheet lamination.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006560
EISBN: 978-1-62708-290-7
Abstract
This article introduces the design and manufacturing implications of additive manufacturing (AM) on part characteristics as well as on design opportunities and on manufacturing practices, supply chains, and even business models. In addition, it describes how they relate to the fundamental nature of AM processes and discusses the characteristics and purposes of AM processes and the parts they fabricate.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006543
EISBN: 978-1-62708-290-7
Abstract
Powder bed fusion (PBF) of polymers is a collection of additive manufacturing processes that melt and fuse polymer in a powder bed. This article provides a complete suite of materials and processes involved in PBF of polymers. The discussion includes details of thermal and manufacturing issues, and safety, postprocessing, and finishing considerations, as well as of principal defects in PBF polymer parts and the mechanical properties of the parts produced by PBF. The article provides case studies on the applications of polymer PBF.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006544
EISBN: 978-1-62708-290-7
Abstract
During metal powder production, powder and/or dust handling, compaction, and part finishing operations, many safety and environmental risks exist. This article is a detailed account of the types of safety hazards that can exist and the issues that occur during metal powder handling, as well as recommendations and strategies that can be employed to both prevent and protect against damaging effects from powder exposure, fire and/or explosions, or environmental impact events.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
Abstract
Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed, with an emphasis on their principles of operation, key processing variables, and the influence of each source on the transfer of heat and material. Common energy sources used for metals AM processes, particularly powder-bed fusion and directed-energy deposition, are also discussed. Brief sections at the end of the article discuss the factors dictating the choice of each of these energy sources and provide information on alternative sources of AM.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006547
EISBN: 978-1-62708-290-7
Abstract
Aerosol jet printing (AJP) can digitally fabricate intricate patterns on conformal surfaces with applications that include flexible electronics and antennas on complex geometries. Given the potential performance and economic benefits, aerosol jetting was studied and compared with the well-known and competing inkjet printing (IJP). More than 35 of the most relevant, highly cited articles were reviewed, focusing on applications requiring fine features on complex surfaces. The following performance indicators were considered for the comparison of AJP and IJP, because these aspects were the most commonly mentioned within the included articles and were identified as being the most relevant for a comprehensive performance assessment: printing process, line width, overspray, complex surface compatibility, diversity of printable materials, and deposition rate. This article is an account of the results of this comparison study in terms of printing capabilities, ink requirements, and economic aspects.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006550
EISBN: 978-1-62708-290-7
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006552
EISBN: 978-1-62708-290-7
Abstract
Hot isostatic pressing (HIP) is widely used within the additive manufacturing (AM) industry to improve material performance and ensure quality. This article is a detailed account of the HIP process, providing information on its equipment set up and discussing the applications, economics, and advantages of the process. The discussion also covers the use of HIP for additively manufactured material to eliminate internal defects, the HIP parameters required to eliminate internal defects, and the influence of HIP on the microstructure and properties of HIP additively manufactured material.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006553
EISBN: 978-1-62708-290-7
Abstract
Vat polymerization (VP) is an additive manufacturing (AM), or three-dimensional (3-D) printing process in which 3-D objects are produced by hardening a liquid polymer into the desired shape. With the introduction of new materials and improvements in material properties, VP offers a good alternative for AM for low-volume production. This overview of the VP process begins with an introduction to two main processes of VP, namely stereolithography apparatus and digital light processing, and then moves on to discuss the characteristics of the feedstocks used as well as their selection criteria. The article then covers safety issues associated with feedstock handling and the manufacturing constraints related to part orientation and design, providing some key tips for VP support structures. This is followed by a discussion on postprocessing/finishing of VP parts. A brief concluding section considers some special topics related to AM process.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006554
EISBN: 978-1-62708-290-7
Abstract
This article is a detailed account of the advantages, disadvantages, and applications of microdispensing processes used in electronics manufacturing industries. The discussion covers various approaches to control material flow, namely time pressure, auger, positive displacement, and progressive cavity pump dispensing. The concept of valving to control starting and stopping is also discussed. The applications include printing solders in microelectronic packaging, printing to pads, printing conductive patterns for antennas, printing active circuits, printing on flexible surfaces, and structural printing.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006556
EISBN: 978-1-62708-290-7
Abstract
The additive manufacturing technologies in the casting of precious metals are divided into two groups: indirect metal methods and direct metal methods. Besides providing a process overview of both of these methods, the focus of this article is on the characteristics, process steps, applications, and advantages of direct metal methods, namely laser melting, material extrusion, binder jetting, material jetting, and vat photopolymerization methods.
Book Chapter
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006558
EISBN: 978-1-62708-290-7
Abstract
This article provides an overview of the implementation of wire embedding with ultrasonic energy and thermal embedding for polymer additive manufacturing, discussing the applications and advantages of the technique. The mechanical and electrical performance of the embedded wires is compared with that of other conductive ink processes in terms of electrical conductivity and mechanical strength.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006559
EISBN: 978-1-62708-290-7
Abstract
Directed-energy deposition (DED) is a kind of additive manufacturing (AM) technology based on synchronous powder feeding or wire feeding. This article provides a comprehensive coverage of DED for ceramic AM, beginning with an overview of DED equipment setup, followed by a discussion on DED materials and the DED deposition process. The bulk of the article is devoted to the discussion on the microstructure and properties of oxide ceramics, namely alumina and zirconia ceramics.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006562
EISBN: 978-1-62708-290-7
Abstract
This article is a review of the material extrusion-based ceramic additive manufacturing (MECAM) processes. The discussion begins with details of extrusion with filament and paste, covering the most popular variants of paste extrusion-based MECAM techniques that can be differentiated based on paste type and the method of shape retention of the deposited layer: extrusion freeforming, robocasting ceramic on-demand extrusion, and freeze-form extrusion fabrication. The article then focuses on post-processing considerations and the mechanical properties of sintered ceramic parts. It concludes with information on innovation opportunities in ceramic additive manufacturing, such as incorporating UV-curing and gelation in the process and producing geometrically complex structures from shapeable green bodies.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006563
EISBN: 978-1-62708-290-7
Abstract
This article focuses on powder bed fusion (PBF) of ceramics, which has the potential to fabricate functional ceramic parts directly without any binders or post-sintering steps. It presents the results of three oxide ceramic materials, namely silica, zirconia, and alumina, processed using PBF techniques. The article discusses the challenges encountered during PBF of ceramics, including nonuniform ceramic powder layer deposition, laser and powder particle interactions, melting and consolidation mechanisms, optimization of process parameters, and presence of residual stresses in ceramics after processing. The applications of PBF ceramics are also discussed.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006564
EISBN: 978-1-62708-290-7
Abstract
This article covers in-line process monitoring of the metal additive manufacturing (AM) methods of laser and electron beam (e-beam) powder-bed fusion (PBF) and directed-energy deposition (DED). It focuses on methods that monitor the component directly throughout the build process. This article is organized by the type of AM process and by the physics of the monitoring method. The discussion covers two types of monitoring possible with the PBF process: monitoring the area of the powder bed and component and monitoring the melt pool created by the laser or e-beam. Methods for layer monitoring include optical and thermal methods that monitor light reflected or emitted in the visible and infrared wavelengths, respectively. Monitoring methods for laser directed-energy deposition (DED) discussed are those that measure the size and shape of the melt pool, the temperature of the melt pool, and the plasma generated by the laser as it interacts with the molten metal.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006565
EISBN: 978-1-62708-290-7
Abstract
This article discusses the basic operating principles, industrial applications, and advantages as well as the parameters influencing the process of laser-induced forward transfer (LIFT) of solid materials, liquid materials, laser-absorbing layers, intact structures, and metallic 3D microstructures in additive manufacturing.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006566
EISBN: 978-1-62708-290-7
Abstract
This article provides a general overview of additively manufactured steels and focuses on specific challenges and opportunities associated with additive manufacturing (AM) stainless steels. It briefly reviews the classification of the different types of steels, the most common AM processes used for steel, and available powder feedstock characteristics. The article emphasizes the characteristics of the as-built microstructure, including porosity, inclusions, and residual stresses. It also reviews the material properties of AM steel parts, including hardness, tensile strength, and fatigue strength, as well as environmental properties with respect to corrosion resistance, highlighting the importance of postbuild thermal processing.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006567
EISBN: 978-1-62708-290-7
Abstract
This article provides an overview of the general methods of metal powder production. It details the primary methods for particle sizing used in additive manufacturing: sieving, laser diffraction and scattering, and digital image analysis. Methods of interpreting and understanding particle size distribution (PSD) data are presented, with an emphasis on the differences between count- and volume-based PSDs. The article then outlines practices for both qualitative and quantitative assessment of particle morphology.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006569
EISBN: 978-1-62708-290-7
Abstract
This article focuses on binder-jetting technologies in additive manufacturing (AM) that produce metal artifacts either directly or indirectly. The intent is to focus on the most strategic and widespread uses of the binder jetting technology and review some of the challenges and opportunities for that technology. The discussion includes a historical overview and covers the major steps involved and the advantages of using the binder jetting process. The major steps of the process covered include printing, curing, de-powdering, and sintering.
1