Skip Nav Destination
Close Modal
By
David L. Bourell, Joseph J. Beaman, Jr., Donald Klosterman, Ian Gibson, Amit Bandyopadhyay
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7
Stereolithography
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006887
EISBN: 978-1-62708-392-8
Abstract
Stereolithographic (STL) additive manufacturing (AM) can be used to fabricate practical components. This article discusses the processes involved in STL-AM of biological scaffolds, providing information on bioscaffold processing, cavity arrangements, and microlattice distributions. Within the last topic, the sub-topic of scaffold modulation is discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006901
EISBN: 978-1-62708-392-8
Abstract
This article provides an overview of the adoption of additively manufactured materials in dentistry. It discusses the practical workflows of a three-dimensional printing technology, vat photopolymerization. Three subgroups of the vat photopolymerization process are laser beam or classic stereolithography apparatus (SLA), direct light processing, and liquid-crystal-display-masked SLA. The article covers two subgroups of 3D printing resins-based appliances, namely intraoral and extraoral appliances. Information on various types of dental appliances and the fabrication of in-office appliances is provided. The article also reviews fourth-dimension printing and discusses the applications of the personalized care model in medicine and dentistry.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006900
EISBN: 978-1-62708-392-8
Abstract
The application of three-dimensional printers can be revolutionary as a tool for the customization and personalization of pharmaceutical dosage forms. The areas of 3D printing applicable to pharmaceutical manufacturing can be segregated into three categories: extrusion technologies, powder-bed fusion, and stereolithography. Common extrusion-based technologies are fused deposition modeling and pressure-assisted microsyringe; powder-bed fusion is separated by binder jet and selective laser sintering. The synergies between pharmaceutical, or active pharmaceutical ingredient (API), and polymer printing are discussed in this article, with particular attention to how the incorporation of small-molecule APIs changes the material selection, design considerations, processing parameters, and challenges associated with each technology.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006553
EISBN: 978-1-62708-290-7
Abstract
Vat polymerization (VP) is an additive manufacturing (AM), or three-dimensional (3-D) printing process in which 3-D objects are produced by hardening a liquid polymer into the desired shape. With the introduction of new materials and improvements in material properties, VP offers a good alternative for AM for low-volume production. This overview of the VP process begins with an introduction to two main processes of VP, namely stereolithography apparatus and digital light processing, and then moves on to discuss the characteristics of the feedstocks used as well as their selection criteria. The article then covers safety issues associated with feedstock handling and the manufacturing constraints related to part orientation and design, providing some key tips for VP support structures. This is followed by a discussion on postprocessing/finishing of VP parts. A brief concluding section considers some special topics related to AM process.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004024
EISBN: 978-1-62708-185-6
Abstract
This article describes two rapid tooling technologies, namely, direct rapid tooling and indirect rapid tooling, for forging-die applications. Commonly used direct rapid tooling technologies include selective laser sintering, three-dimensional printing, and laser-engineered net shape process. The indirect rapid tooling technologies include 3D Keltool process, hot isostatic pressing, rapid solidification process tooling, precision spray forming, and radially constricted consolidation process.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003397
EISBN: 978-1-62708-195-5
Abstract
This article reviews various rapid prototyping (RP) processes such as stereolithography, powder sintering, hot melt extrusion, sheet lamination, solid ground curing, and three-dimensional printing. It discusses the various material prototypes produced by RP technology. The list of materials includes particulate and fiber-reinforced polymers, ceramic-matrix composites, and metal-matrix composites. The article also provides information on freeform-fabrication techniques for composite part lay-up.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002449
EISBN: 978-1-62708-194-8
Abstract
Rapid prototyping (RP) is a field in manufacturing involving techniques/devices that produce prototype parts directly from computer-aided design models in a fraction of time. This article discusses the principles of RP and three major commercial processes, based on their layer creation method. These include selective cure layered processes, extrusion/droplet deposition processes, and sheet form fabricators. The article provides information on the three classes of RP, namely, voxel sequential volume addition, periphery cutting, and area sequential volume addition. It presents equations that represent build times for each of the three classes.