Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-13 of 13
Binder jetting
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006862
EISBN: 978-1-62708-392-8
Abstract
The article presents an in-depth discussion on the various additive manufacturing techniques such as binder jetting, directed-energy deposition, material extrusion, material jetting, powder-bed fusion, sheet lamination, and vat polymerization processes. This article then discusses the different critical material aspects of additively manufactured medical devices, beginning with the preprinting phase (material consistency and recycling), the printing phase (build orientation), and the postprinting phase (part evaluation, biocompatibility, and sterilization) with supporting materials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006903
EISBN: 978-1-62708-392-8
Abstract
Additive manufacturing (AM) technologies print three-dimensional (3D) parts through layer-by-layer deposition based on the digital input provided by a computer-aided design file. This article focuses on the binder jet printing process, common biomaterials used in this AM technique, and the clinical applications relevant to these systems. It reviews the challenges and future directions of binder-jetting-based 3D printing.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006907
EISBN: 978-1-62708-392-8
Abstract
Additive manufacturing (AM) techniques include powder-bed fusion (PBF), directed-energy deposition, binder jetting (BJ), extrusion-based desktop, vat photopolymerization, material jetting, and sheet lamination. The development of suitable powders for AM is a challenging task because of critical design parameters including chemical composition, flowability of powders, and melt surface tension. This article explains the fabrication methods of metal and novel alloy powders for medical applications. The development of zirconium alloy powder for laser-PBF is introduced as a case study.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006888
EISBN: 978-1-62708-392-8
Abstract
Metallic alloys that are typically used for medical purposes include stainless steels, Ti-6Al-4V, and Co-Cr-Mo. This article discusses the relative merits of each of these alloys. The utilization of stainless steels in the biomedical industry, especially in relation to the additive manufacturing (AM) process, is the main focus of this article. The characteristics of various stainless steels are described subsequently, and the categories that are of relevance to the biomedical industry are identified. The types of stainless steels covered are austenitic, ferritic, martensitic, duplex, and precipitation-hardened stainless steels. The article discusses the potential benefits of AM for biomedical devices. It describes the types of AM processes for stainless steels, namely binder jet, directed-energy deposition, and laser powder-bed fusion. The article reviews the AM of austenitic, martensitic, and PH stainless steels for biomedical applications. In addition, the challenges and obstacles to the clinical use of AM parts are covered.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006889
EISBN: 978-1-62708-392-8
Abstract
This article discusses some of the additive manufacturing (AM) based fabrication of alloys and their respective mechanical, electrochemical, and in vivo performance. Firstly, it briefly discusses the three AM techniques that are most commonly used in the fabrication of metallic biomedical-based devices: binder jetting, powder-bed fusion, and directed-energy deposition. The article then characterizes the electrochemical properties of additive-manufactured/processed cobalt-chromium alloys. This is followed by sections providing an evaluation of the biological response to CoCr alloys in terms of the material and 3D printing fabrication. Discussion on the biological response as a function of direct cellular activity on the surface of CoCr alloys in static conditions (in vitro), in dynamic physiological conditions (in vivo), and in computer-simulated conditions (in silico) are further discussed in detail. Finally, the article provides information on the qualification and certification of AM-processed medical devices.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.9781627082907
EISBN: 978-1-62708-290-7
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006555
EISBN: 978-1-62708-290-7
Abstract
Additive manufacturing is a collection of manufacturing processes, each of which builds a part additively based on a digital solid model. The solid model-to-additive manufacturing interface and material deposition are entirely computer-controlled. The traditional additive manufacturing applications have been used for low production runs of parts with complex shapes and geometric features. Additive manufacturing is also used for topology optimization and it impacts the process and supply chain. This article discusses processes, including vat photopolymerization, material jetting, powder bed fusion, directed energy deposition, material extrusion, binder jetting, and sheet lamination.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006569
EISBN: 978-1-62708-290-7
Abstract
This article focuses on binder-jetting technologies in additive manufacturing (AM) that produce metal artifacts either directly or indirectly. The intent is to focus on the most strategic and widespread uses of the binder jetting technology and review some of the challenges and opportunities for that technology. The discussion includes a historical overview and covers the major steps involved and the advantages of using the binder jetting process. The major steps of the process covered include printing, curing, de-powdering, and sintering.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006571
EISBN: 978-1-62708-290-7
Abstract
The highly irregular morphologies of ceramic powder particles due to their process history present a challenge to binder jetting additive manufacturing (BJ-AM) ceramic powder feedstock processability, but knowledge of powder metallurgy of ceramics benefits the development and analysis of the BJ-AM ceramic processes. Understanding BJ-AM process principles and ceramics processing challenges requires reviewing a number of fundamental principles, which this article delineates. The discussion covers the processability considerations, a brief summary of some fundamental aspects of modeling of liquid permeation in the powder bed, and process capabilities and advantages of BJ-AM technology.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006576
EISBN: 978-1-62708-290-7
Abstract
This article provides a brief overview of additive manufacturing (AM) of tool steels via various AM technologies such as laser powder bed fusion, electron powder bed fusion, blown powder directed energy deposition, and binder jet AM. The discussion includes process overview and covers the mechanism, advantages, and applications of each of these techniques.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
Abstract
This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices, copper alloys used, selected applications, material properties, and where applicable, compares these data and properties to traditionally processed materials. The data presented and the surrounding discussion focus on bulk metallurgical processing of copper components. The discussion covers the composition and performance criteria for copper alloys that have been reported for AM and discusses key differences in process-structure-property relationships compared to conventionally processed material. The article also provides information on feedstock considerations for copper powder handling.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006583
EISBN: 978-1-62708-290-7
Abstract
Tungsten, molybdenum, and cemented carbide parts can be produced using several additive manufacturing technologies. This article classifies the most relevant technologies into two groups based on the raw materials used: powder-bed methods, such as selective laser melting, electron beam melting, and binder jet three-dimensional (3-D) printing, and feedstock methods, such as fused-filament fabrication and thermoplastic 3-D printing. It discusses the characteristics, processing steps, properties, advantages, limitations, and applications of these technologies.