Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Silicones
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006028
EISBN: 978-1-62708-172-6
Abstract
This article focuses on those areas of coatings technology where silicon-based technology (SBT) is the primary enabling technology and where SBT is used as an additive to provide unique properties to the coating film. It describes the chemistry and the uses of alkoxy silanes. The uses of silicates, siliconates, silicone fluids, and silicone resins in coatings are reviewed. The article discusses the various applications of SBT, namely, primers, heat-resistant coatings, industrial maintenance coatings, hygienic coatings, and abrasion-resistant coatings, and for marine biofouling control. It also provides information on the benefits of silicon-base additives.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006029
EISBN: 978-1-62708-172-6
Abstract
This article focuses on technologies in the protective coatings field, namely, polysiloxane hybrids and related materials. Industrial maintenance topcoats, including silicone alkyds, silicone epoxies, and polysiloxanes are reviewed. The article discusses two major application areas of protective coatings, namely, architectural coatings and automotive clear coats.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005672
EISBN: 978-1-62708-198-6
Abstract
This article provides an overview of curing techniques, adhesive chemistries, surface preparation, adhesive selection, and medical applications of adhesives. The curing techniques are classified into moisture, irradiation, heat, and anaerobic. The article highlights the common types of curable adhesives used for medical device assemblies, including acrylics, cyanoacrylates, epoxies, urethanes, and silicones. Other forms of adhesives, such as hot melts, bioadhesives, and pressure-sensitive adhesives, are also discussed. The typical characteristics and applications of biocompatible medical device adhesives are listed in a table. The article concludes with a section on the selection of materials for medical adhesives.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005167
EISBN: 978-1-62708-186-3
Abstract
This article describes the formability and surface contamination of the refractory metals such as niobium, tantalum, molybdenum, tungsten, and titanium-zirconium-molybdenum alloys. It reviews the factors that affect mechanical properties and formability during rolling and heat treatment. The effect of temperature on the formability of refractory metals is discussed. The article provides a description of the forming methods of sheet and preformed blanks using refractory metals. It also discusses the types of lubricants, including oils, soaps, waxes, silicones, graphite, and molybdenum disulphide, used in the forming of refractory metals.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003692
EISBN: 978-1-62708-182-5
Abstract
This article discusses the coating systems categorized by the generic type of binder or resin and grouped according to the curing or hardening mechanism inherent within that generic type. It focuses on the properties, advantages, and limitations of various autooxidative cross-linked resins, thermoplastic resins, and cross-linked thermosetting resins. The autooxidative cross-linked resins include alkyd resins and epoxy esters. The article examines the two types of coatings based on thermoplastic resins: those deposited by evaporation of a solvent, commonly called lacquers, and those deposited by evaporation of water, a class of coatings called water-borne coatings. The coatings that chemically cross link by copolymerization, including epoxies, unsaturated polyesters, urethanes, high-temperature curing silicones, and phenolic linings, are also described.