Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Amino resins
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006044
EISBN: 978-1-62708-172-6
Abstract
Acrylic coatings are one of the major generic classes of organic coatings and are prevalent in both architectural and industrial applications. This article provides information on the chemistry of acrylic polymers, the methods used in their manufacture, the relationship between structure and properties when they are formulated into coatings, and how they are being used in coatings. The main discussion points are the differences between solventborne and waterborne technologies and some of the challenges in formulating and applying waterborne acrylic coatings. The article describes the mechanism of film formation of acrylic latex polymers and its effect on final coating properties. It discusses the types of waterborne acrylic latex coatings based on chemical properties and based on applications such as primers, intermediate coats, topcoats, stains, and direct-to-substrate finishes. The article concludes with a description of the advances in the development of waterborne acrylic coatings for maintenance and protective applications.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003010
EISBN: 978-1-62708-200-6
Abstract
A thermosetting resin, or thermoset, is a synthetic organic polymer that cures to a solid, infusible mass by forming a three-dimensional network of covalent chemical bonds. Significant applications include construction and thermoset engineering plastics. This article discusses the general and family characteristics of thermosetting resin families, including allyls, aminos (urea formaldehyde and melamine formaldehyde), cyanates, epoxies, polybenzimidazoles, unsaturated polyesters, thermoset polyimides, phenolics, and vinyl esters. It also explains processing methods, including curing and curing agents. The article provides descriptions of commercial product forms and the wide array of applications of thermosetting resins. It also tabulates the performance properties (mechanical, thermal, electrical and chemical resistance) of some families of unfilled or unreinforced thermosetting resins and reinforced or filled grades.