Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Liquid chromatography
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006636
EISBN: 978-1-62708-213-6
Abstract
This article describes high-performance liquid chromatography and ultra-high-performance liquid chromatography that are used to separate and quantify the chemical components in any sample that can be dissolved in a liquid. This includes pharmaceutical drugs, medicinal plant extracts, food constituents, flavors, fragrances, industrial chemicals, pesticides, and pollutants. Readers are introduced to the most commonly employed mode, reverse-phase chromatography, with examples and an exclusive focus on commercially available instruments and consumables. The discussion covers the various processes involved in liquid chromatography, including assessing a separation of sample components, adjusting the mobile phase, choosing the stationary phase, optimizing a separation, preparing real samples, and analyzing complex samples.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003432
EISBN: 978-1-62708-195-5
Abstract
This article focuses on epoxy because this resin category has widespread use and because it is tested using quality control measures typical of most resin systems. It explains that a typical resin system will consist of one or more epoxy resins, a curing agent, and a catalyst to control the rate of reaction. The article describes the component material tests, mixed resin system tests, and prepreg tests for the resin system. These tests include high-performance liquid chromatography, infrared spectroscopy, and gel permeation chromatography. The article contains a table that lists typical resin and prepreg property tests.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001777
EISBN: 978-1-62708-178-8
Abstract
This article introduces the fundamental concepts and the essential components of liquid chromatography (LC). It discusses the different modes of LC, such as liquid-solid chromatography, liquid-liquid chromatography, bonded-phase chromatograph, normal-phase chromatography, reversed-phase chromatography, ion-exchange chromatography, ion-pair chromatography, and size-exclusion chromatography. The article also includes a discussion on the qualitative and quantitative analyses and the applications of LC.