Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 44
Thermosetting plastics
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
Abstract
This article discusses the most common thermal analysis methods for thermosetting resins. These include differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. The article also discusses the characterization of uncured thermosetting resins as well as the curing process. Then, the techniques to characterize the physical properties of cured thermosets and composites are presented. Several examples of stress-strain curves are shown for thermosets and thermoplastic polymers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006935
EISBN: 978-1-62708-395-9
Abstract
Manufacturing process selection is a critical step in plastic product design. The article provides an overview of the functional requirements that a part must fulfil before process selection is attempted. A brief discussion on the effects of individual thermoplastic and thermosetting processes on plastic parts and the material properties is presented. The article presents process effects on molecular orientation. It also illustrates the thinking that goes into the selection of processes for size, shape, and design factors. Finally, the article describes how various processes handle reinforcement.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
Abstract
This introductory article describes the various aspects of chemical structure that are important to an understanding of polymer properties and thus their eventual effect on the end-use performance of engineering plastics. The polymers covered include hydrocarbon polymers, carbon-chain polymers, heterochain polymers, and polymers containing aromatic rings. The article also includes some general information on the classification and naming of polymers and plastics. The most important properties of polymers, namely, thermal, mechanical, chemical, electrical, and optical properties, and the most significant influences of structure on those properties are then discussed. A variety of engineering thermoplastics, including some that are regarded as high-performance thermoplastics, are covered in this article. In addition, a few examples of commodity thermoplastics and biodegradable thermoplastics are presented for comparison. Finally, the properties and applications of six common thermosets are briefly considered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
Abstract
This article discusses the thermal properties of engineering plastics and elastomers with respect to chemical composition, chain configuration, and base polymer conformation as determined by thermal analysis. It describes the processing of base polymers with or without additives and their response to chemical, physical, and mechanical stresses whether as an unfilled, shaped article or as a component of a composite structure. It summarizes the basic thermal properties of thermoplastics and thermosets, including thermal conductivity, temperature resistance, thermal expansion, specific heat, and glass transition temperature. It also provides information on polyimide and bismaleimide resin systems. Representative examples of different types of engineering thermoplastics are discussed primarily in terms of structure and thermal properties.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006530
EISBN: 978-1-62708-207-5
Abstract
Adhesive bonding is a proven technology in the manufacture of automotive assemblies, helping carmakers achieve weight reduction goals without compromising body stiffness, crash performance, and noise-vibration-handling characteristics. This article discusses the advantages and limitations of adhesive-bonded aluminum joints and the procedures used to produce them. It addresses surface preparation, the addition of interfacial coatings and primers, and the application of thermoplastic and thermosetting resins. The article examines the nature and role of the various layers that constitute the joint and explains how each contributes to performance. It also discusses adhesive selection factors, joint design, and testing procedures.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006407
EISBN: 978-1-62708-192-4
Abstract
This article discusses the functions of lubricants to prevent premature failure of rolling element bearings and the advantages of fluid lubrication. It describes the composition of refined mineral oil for rolling bearing applications. The article reviews the types and properties of nonpetroleum oils, such as polyglycols, phosphate esters, silicone fluids, dibasic acid esters, and fluorinated polyethers. It discusses the properties of greases, including grease speed limits, grease composition, relubrication intervals, corrosion prevention behavior, and grease compatibility. The article concludes with a discussion on polymeric lubricants and solid lubricants.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006039
EISBN: 978-1-62708-172-6
Abstract
Bitumen for coating usage can best be categorized as two fundamental but very different types: asphalts and coal tars. This article provides a detailed discussion on asphalt and coal tar hot-melt applications; asphalt and coal tar emulsions; asphalt and coal tar cutbacks; and coal tar epoxies. It reviews the similarities between asphaltic and coal tar coatings and discusses the health and environmental concerns of these materials.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006028
EISBN: 978-1-62708-172-6
Abstract
This article focuses on those areas of coatings technology where silicon-based technology (SBT) is the primary enabling technology and where SBT is used as an additive to provide unique properties to the coating film. It describes the chemistry and the uses of alkoxy silanes. The uses of silicates, siliconates, silicone fluids, and silicone resins in coatings are reviewed. The article discusses the various applications of SBT, namely, primers, heat-resistant coatings, industrial maintenance coatings, hygienic coatings, and abrasion-resistant coatings, and for marine biofouling control. It also provides information on the benefits of silicon-base additives.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006029
EISBN: 978-1-62708-172-6
Abstract
This article focuses on technologies in the protective coatings field, namely, polysiloxane hybrids and related materials. Industrial maintenance topcoats, including silicone alkyds, silicone epoxies, and polysiloxanes are reviewed. The article discusses two major application areas of protective coatings, namely, architectural coatings and automotive clear coats.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006044
EISBN: 978-1-62708-172-6
Abstract
Acrylic coatings are one of the major generic classes of organic coatings and are prevalent in both architectural and industrial applications. This article provides information on the chemistry of acrylic polymers, the methods used in their manufacture, the relationship between structure and properties when they are formulated into coatings, and how they are being used in coatings. The main discussion points are the differences between solventborne and waterborne technologies and some of the challenges in formulating and applying waterborne acrylic coatings. The article describes the mechanism of film formation of acrylic latex polymers and its effect on final coating properties. It discusses the types of waterborne acrylic latex coatings based on chemical properties and based on applications such as primers, intermediate coats, topcoats, stains, and direct-to-substrate finishes. The article concludes with a description of the advances in the development of waterborne acrylic coatings for maintenance and protective applications.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006046
EISBN: 978-1-62708-172-6
Abstract
Phenols are a class of aromatic organic compounds in which one or more hydroxyl groups are attached directly to the aromatic benzene ring, C6H6. This article describes the development of phenolic resin and the formation of novolac resin and resol resin. Phenolic resol resins are used in interior can coatings and tank linings as well as for heat exchanger tube coatings because of their high chemical and thermal resistance. The article concludes with a description of the concerns that a specifier, user, or applicator should be aware of regarding the use of phenolic coatings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006009
EISBN: 978-1-62708-172-6
Abstract
This article provides a discussion on polyester coating applications such as powder coatings, can coatings, and automotive paints. It includes an overview, structure, properties, and benefits of vinyl ester resins. The article discusses the additives for both unsaturated polyester and vinyl ester coatings, namely, curing systems, thixotropic agents and fillers. It exemplifies polyester and vinyl ester coating, lining and flooring systems that are used for top-to-bottom protection of industrial plants and equipment. The article also highlights the concerns to be addressed when using polyesters and vinyl esters.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006011
EISBN: 978-1-62708-172-6
Abstract
Polyurethane is any polymer consisting of a chain of repeating organic units joined by urethane linkages. Polyurethane polymers are formed through step-growth polymerization by making a monomer containing at least two isocyanate functional groups to react with another monomer containing at least two hydroxyl (alcohol) groups. This article provides a detailed account of the protective coatings used in the building, infrastructure, and architectural markets. It focuses on the various types of polyurethane coatings used in these applications: moisture-cure and two-pack aromatic coatings as primers and topcoats, moisture-cure aromatic elastomeric high-build coatings, moisture-cure aliphatic topcoats, two-pack aliphatic polyurethane coatings as topcoats, and one- and two-pack polyurethane dispersion coatings as sealers and topcoats. It also includes a section on the health effects of isocyanates.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006051
EISBN: 978-1-62708-172-6
Abstract
A coating can be defined as a substance spread over a surface to provide protection or to serve decorative purposes. This article discusses two industrial coating components, namely, nonvolatile components such as the resin or binder, pigments, and any additives that may be incorporated into the formulation; and volatile components such as solvents, or water in emulsions and their composition. It provides general information on volatile organic compounds. The article describes the film-forming mechanisms of various coating types, namely, lacquers, chemically converting coatings, latex coatings, alkyds and other resins, which cure by oxidation, moisture-curing polyurethanes and inorganic zinc primers, and powder coatings. The article concludes with a discussion on the functions of the primer, intermediate coat, and topcoat in coating systems.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006007
EISBN: 978-1-62708-172-6
Abstract
Functional fusion-bonded epoxy (FBE) coatings are used as external pipe coatings, base layer for three-layer pipe-coating systems, internal pipe linings, and corrosion coatings for concrete reinforcing steel (rebar). This article provides information on the chemistries of FBE, and discusses the application procedures for internal and external FBE pipe coating. The procedures involve pipe inspection, surface preparation, heating, powder application, curing, cooling, coating inspection, and repairing. It describes the problems and solutions for FBE external pipe coatings, girth weld FBE application, FBE custom coatings, internal FBE pipe linings, and FBE rebar coatings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006077
EISBN: 978-1-62708-172-6
Abstract
This article provides a detailed discussion on the principal classes and curatives of epoxy resins used in the coatings industry. The principal classes are bisphenol A epoxy, bisphenol F epoxy, epoxy phenol novolac, cycloaliphatic epoxies, epoxy acrylate, brominated bisphenol-A-based epoxy, phosphorus-containing epoxy, fluorinated epoxies, epoxy esters, epoxy phosphate esters, and waterborne epoxy. The principal curatives are amines, amine adducts, cyanoethylated amines, ketimines, polyoxyalkylene amines, cycloaliphatic amines, aromatic amines, polyamides, amido amines, and dicyandiamides. Other curatives include polyester co-polymers, phenolic co-polymers, melamine and urea formaldehyde co-polymer resins, phosphate flame retardants, ultraviolet and electron beam curing of epoxy resins, Mannich bases, Mannich-based adducts, and anhydrides. The article concludes by discussing the concerns regarding the use of epoxy coatings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006071
EISBN: 978-1-62708-172-6
Abstract
An alkyd is an ester-based polymer derived from the polycondensation reaction of polyhydric alcohol and polybasic acid. This article provides useful information on the chemistry, production, coating formulations, modification, commercial products, and application methods of alkyd resins. It also provides a section on drying oil, which is used in the manufacture of resins. The article describes the three categories of metals that have been used in drier compounds: primary driers (active or oxidation driers), secondary driers (through-driers), and auxiliary driers. It also provides information on the oil length of an alkyd resin and on solvents, which play a critical role in the formulation and use of the coating. The article concludes with a description of the concerns that a user, specifier, or applicator should be aware of when using alkyd coatings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.9781627081726
EISBN: 978-1-62708-172-6
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006038
EISBN: 978-1-62708-172-6
Abstract
This article describes the coating materials, surface-preparation requirements, and application techniques used to protect underground pipelines. It provides a valuable insight into the types of polymer-based coatings that are both cost-effective and widely accepted in the pipeline industry.
1