Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9
Diamond
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006360
EISBN: 978-1-62708-192-4
Abstract
This article describes two variations of carbon-base coatings: diamondlike carbon (DLC) coatings and polycrystalline diamond (PCD) coatings. It discusses the basics of a few deposition methods as they apply to industrially relevant coatings. The methods include deposition of tungsten-containing hydrogenated amorphous carbon films, deposition of tetrahedral amorphous carbon films, and deposition of silicon-incorporated hydrogenated amorphous carbon films. The most common deposition technologies for diamond films are also discussed. The article provides information on surface preparation for DLC and diamond deposition. It also provides a discussion on the coating composition and structure, mechanical and tribological properties, and applications of DLC and diamond coatings. The quality control techniques for DLC and diamond coatings are specified to meet customer requirements and ensure repeatable quality.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006367
EISBN: 978-1-62708-192-4
Abstract
This article discusses the importance of friction and wear and the role of lubricants in composites. It highlights the progress and developments in using different forms of carbon allotropes in composites for improved friction and wear performance of materials. The article focuses on the widely used form known as carbon black (CB) and shows how to deal with friction and wear of polymers and composites when gamma irradiation is involved. It also discusses the role of graphite in composite materials, which is widely used as a dry lubricant. The article examines the tribology of carbon nanotubes (CNTs) as components in composite materials. It also highlights some of the most pronounced examples of graphene use as a reinforcement agent for improving tribological performance in composite matrices. The article concludes with a discussion on the progress of research in diamond-containing composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003373
EISBN: 978-1-62708-195-5
Abstract
This article describes the various pure forms of carbon matrices and the corresponding methods used to create them or incorporate them into a matrix of a composite. These forms include graphite, diamond, fullerenes, and nanotubes. The article discusses the three types of liquid precursors, namely, thermoplastic, thermosetting, and evaporative or solvent carriers. It provides a description of the advantages and limitations of various methods involved in chemical vapor infiltration. The article concludes with a discussion on matrix contribution to composite properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003188
EISBN: 978-1-62708-199-3
Abstract
Selecting the proper cutting tool material for a specific machining application can provide substantial advantages, including increased productivity, improved quality, and reduced costs. This article begins with a description of the factors affecting the selection of a cutting tool material. This is followed by a schematic representation of their relative application ranges in terms of machining speeds and feed rates. The article provides a detailed account of chemical compositions of various tool materials, including high-speed tool steels, cobalt-base alloys, cemented carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. It compares the toughness, and wear resistance for these cutting tool materials. Finally, the article explains the steps for selecting tool material grades for specific application.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003059
EISBN: 978-1-62708-200-6
Abstract
This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal structure, density, mechanical properties, physical properties, electrical properties, thermal properties, and magnetic properties.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001320
EISBN: 978-1-62708-170-2
Abstract
The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing productivity of carbide, cermet, and ceramic cutting tool materials used in machining operations. The useful life of cutting tools may be limited by a variety of wear processes, such as crater wear, flank wear or abrasive wear, builtup edge, depth-of-cut notching, and thermal cracks. The article provides information on the applicable methods for surface engineering of cutting tools, namely, chemical vapor deposited (CVD) coatings, physical vapor deposited coatings, plasma-assisted CVD coatings, diamond coatings, and ion implantation.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002177
EISBN: 978-1-62708-188-7
Abstract
This article discusses the factors to be considered in selecting and evaluating machining tests for the purpose of evaluating cutting tool performance and workpiece machinability. It provides a brief description of cutting tool materials, such as high-speed steels, uncoated and coated carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. The article considers the matrices that represent the range of tests performed on candidate cutting tool materials: the workpiece matrix, the property matrix, and the operation matrix. Various machine tests used to evaluate cutting tools, including the impact test, turning test, and facing test, are described. The article lists the factors to be taken into consideration in measuring the machinability of a material. The article presents general recommendations for proper chip groove selection on carbide tools and concludes with information on machining economics.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002127
EISBN: 978-1-62708-188-7
Abstract
Diamond and cubic boron nitride (CBN) are the two hardest materials known. They have found numerous applications in industry, both as ultrahard abrasives and as cutting tools. This article reviews the high-pressure synthesis and fabrication techniques of these materials. It discusses their wear resistance, tool geometries, and machining parameters. The article also explains their application as cutting tools in the field of machining.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002152
EISBN: 978-1-62708-188-7
Abstract
Superabrasives collectively refer to the diamond and cubic boron nitride (CBN) abrasives used in grinding applications. This article discusses the classification of superabrasive wheels according to a variety of sizes and shapes, construction, concentration, and bond systems. It provides information on the applications of the superabrasive wheels depending on the factors of the grinding system. These factors include machine tool variables, work material, wheel selection, and operational factors. The article describes the methods available for superabrasive wheel truing in production grinding operations, namely, stationary tool, powered, and form truings. It reviews the truing methods, such as truing with abrasive wheels and hard ceramics, for batch production. The article explains practical methods available for dressing CBN wheels, namely, abrasive stick, abrasive-jet, slurry, and high-pressure waterjet dressing. It concludes with information on the conditioning process of the CBN wheel.