Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-15 of 15
Zinc alloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006412
EISBN: 978-1-62708-192-4
Abstract
A sliding bearing (plain bearing) is a machine element designed to transmit loads or reaction forces to a shaft that rotates relative to the bearing. This article discusses the properties of bearing materials. It provides information on bearing material systems: single-metal systems, bimetal systems, and trimetal systems. The article describes the designations, nominal compositions, mechanical properties, and applications of various sliding bearing alloys: tin-base alloys, lead-base alloys, copper-base alloys, aluminum-base alloys, silver-base alloys, zinc-base alloys, additional metallic materials, nonmetallic materials. It describes casting processes, powder metallurgy processes, and electroplating processes. The article also discusses the selection criteria for bearing materials.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006275
EISBN: 978-1-62708-169-6
Abstract
This article discusses the various heat treating processes, namely, solid-solution hardening, solution treating, solution aging and dispersion hardening, for low-melting-point alloys such as lead alloys, tin-rich alloys, and zinc alloys. Heat treating of tin-rich alloys has been practiced for bearing alloys, pewterware, and organ pipe alloys. The article reviews the principles underlying these applications.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005905
EISBN: 978-1-62708-167-2
Abstract
Crucible furnaces, as compared to electric arc furnaces, are increasingly deployed in various melting practices due to their environmental and workplace friendliness and their process benefits. This article focuses on the application of induction crucible furnaces for melting and pouring operations in small-and medium-sized steel foundries, including aluminum, copper, and zinc industries. It also provides information on the process engineering benefits of melting and pouring operations.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005443
EISBN: 978-1-62708-196-2
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
Abstract
This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
Abstract
This article describes the control of alloy composition and impurity levels in die casting of zinc alloys based on agitation, use of foundry scrap, and melt temperature and fluxing. It reviews the process considerations for the melt processing of the zinc alloys. The process considerations include the usage of furnaces and launder system, scrap return, inclusions in zinc alloys, fluxing of zinc alloys, and galvanizing fluxes. The article discusses the materials and lubricant selection, casting and die temperature control, and trimming process used in hot chamber die casting for zinc alloys. It also reviews other casting processes for zinc alloys, such as sand casting, permanent mold casting, plaster mold casting, squeeze casting, and semisolid casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
Abstract
Die casting is the process most often used for shaping zinc alloys. This article tabulates the compositions of zinc casting alloys and comparison of typical mechanical properties of zinc casting alloys. It discusses additions of alloys to the zinc, including aluminum, magnesium, copper, and iron. The article illustrates a characteristic five-layer microstructure of zinc alloy casings. It discusses the various methods of finishing of zinc alloy die castings, including chromium plating, polishing, painting, and electropainting. The article describes the casting of inserts and their uses in the zinc. It concludes with information on the applications of zinc die castings.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005140
EISBN: 978-1-62708-186-3
Abstract
This article reviews the production variables that influence the selection of various stamping die materials: ferrous, nonferrous, and plastic die materials. It provides a discussion on the specific types of die materials for tool steels, cast irons, plastics, aluminum, bronze, zinc-aluminum, and steel-bonded carbides. The article describes factors to be considered during the selection of materials for press-forming dies.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004141
EISBN: 978-1-62708-184-9
Abstract
This article describes the various environmental factors that cause corrosion on metal artifacts, which include water, temperature fluctuations, pollutants, local conditions of acidity or alkalinity, vegetation, and animals. The corrosion processes experienced by five common metals, such as copper alloys, iron alloys, lead, zinc, and aluminum, used in outdoor artifacts are discussed. Finally, the article reviews conservation and preservation strategies for these five as well as gilded metals.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
Abstract
From the standpoint of corrosion protection of iron and steel, metallic coatings can be classified into two types: noble coatings and sacrificial coatings. This article focuses on hotdipped zinc, aluminum, zinc-aluminum alloy and aluminum-zinc alloy coatings. It discusses the Sendzimir process and the Cook-Norteman process, which are the two commercial processes that are used for almost all hot-dip galvanized sheet steel in the United States. The article provides a discussion on the aqueous corrosion and atmospheric corrosion of galvanized steel and aluminized steel, as well as the intergranular corrosion of galvanized steel.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
Abstract
Zinc is one of the most used metals, ranking fourth in worldwide production and consumption behind iron, aluminum, and copper. This article commences with an overview of the applications of zinc that can be divided into six categories: coatings, casting alloys, alloying element in brass and other alloys, wrought zinc alloys, zinc oxide, and zinc chemicals. It discusses the corrosion and electrochemical behavior of zinc and its alloys in various environments, particularly in atmospheres in which they are most widely used. The article tabulates the corrosion rates of zinc and zinc coatings immersed in various types of waters, in different solutions in the neutral pH range, and in soils at different geographic locations in the United States. It concludes with information on the forms of corrosion encountered in zinc coatings, including galvanic corrosion, pitting corrosion, and intergranular corrosion.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
Abstract
This article discusses the specimen preparation techniques for zinc and its alloys and zinc-coated specimens, namely, sectioning, mounting, grinding and polishing, and etching. It describes the characteristics of lead, cadmium, iron, copper, titanium, aluminum, magnesium, and tin, which are present in the microstructure of zinc alloys. The article also provides information on microexamination that helps to determine the dendrite arm spacing, as well as the grain size, grain boundaries, and grain counts.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001315
EISBN: 978-1-62708-170-2
Abstract
Zinc and zinc alloys require surface engineering prior to coating or use to improve adhesion and corrosion resistance. Die-cast zinc parts, in addition, must be trimmed and finished to remove flash and parting lines. This article covers zinc cleaning procedures as well as coating and finishing processes. It explains how to remove parting lines and presents several mechanical finishing methods, including surface polishing, brushing, controlled shot peening, and buffing. It also provides information on solvent cleaning, emulsion cleaning, aqueous detergent or alkaline cleaning), electrocleaning, acid dipping, and zinc conversion coating treatments.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001077
EISBN: 978-1-62708-162-7
Abstract
This article describes the zinc and zinc alloys for decorative and functional applications. It focuses on the types of zinc coatings, namely, hot dip galvanizing, electrogalvanizing, metallizing, and mechanical galvanizing. The article covers the uses of zinc alloy castings, including pressure die castings, and gravity castings. It details the wrought products of zinc and zinc alloys, including flat-rolled products, wire-drawn products, extruded products, and forged products. The article also describes various properties of zinc alloys, including mechanical, thermal, electrical, chemical, and magnetic properties. The listing for each alloy includes chemical compositions, relevant specifications, mass characteristics, and fabrication characteristics.