Skip Nav Destination
Close Modal
By
Lucas W. Koester, Leonard J. Bond, Peter C. Collins, Hossein Taheri, Timothy Bigelow
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 72
Residual stress analysis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.9781627084505
EISBN: 978-1-62708-450-5
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007015
EISBN: 978-1-62708-450-5
Abstract
This article examines residual stresses in quenched and surface-hardened steels by focusing on its theoretical background, formation mechanisms of residual stress, effects of tempering and cryogenic cooling on residual stress, effects of residual stress on the service performance of components, and measurement, computation, and relaxation of residual stress.
Book Chapter
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007018
EISBN: 978-1-62708-450-5
Abstract
Quenching is one of the most important heat treating processes, because it is so closely related to dimensional control requirements and control of residual stresses. This article provides an overview of the fundamental material- and process-related parameters of quenching on residual stress, distortion control, and cracking. This overview is followed by various selected case histories of failures attributed to the quenching process.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.9781627084390
EISBN: 978-1-62708-439-0
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006990
EISBN: 978-1-62708-439-0
Abstract
Structure-property relationships for metal additive manufacturing (AM) using solidification-based AM processes (e.g., powder-bed fusion and directed-energy deposition) are the focus of this article. Static strength and ductility properties in AM materials are impacted heavily by the microstructure but are also affected by porosity and surface roughness. Fatigue failure in AM materials is also influenced by porosity, surface roughness, microstructure, and residual stress due to applied manufacturing processing parameters. Post-processing treatments can further influence fatigue failure in AM materials.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006976
EISBN: 978-1-62708-439-0
Abstract
This article provides an overview of different modeling approaches used to capture the phenomena present in the additive manufacturing (AM) process. Inherent to the thermomechanical processing that occurs in AM for metals is the development of residual stresses and distortions. The article then provides an overview of thermal modeling. It presents a discussion on solid mechanics simulation and microstructure simulation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006632
EISBN: 978-1-62708-213-6
Abstract
This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required for XRD residual-stress measurement are then presented. The article provides information on measurement of subsurface stress gradients and stress relaxation caused by layer removal. The article concludes with a section on examples of applications of XRD residual-stress measurement that are typical of industrial metallurgical, process development, and failure analysis investigations undertaken at Lambda Research.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006506
EISBN: 978-1-62708-207-5
Abstract
The fundamental objective of quenching is to preserve, as nearly as possible, a metastable solid solution formed at the solution heat treating temperature, by rapidly cooling to some lower temperature, usually near room temperature. This article provides an overview of the factors used to determine a suitable cooling rate and the appropriate quenching process to develop a suitable cooling rate. It discusses the three distinct stages of quenching: vapor stage, boiling stage, and convection stage. The article reviews the factors that affect the rate of cooling in production operations. It discusses the quenchants that are used in quenching aluminum alloys, namely, hot or cold water and polyalkylene glycol. The article also describes the racking practices for controlling distortion and the level of residual stresses induced during the quench.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006476
EISBN: 978-1-62708-190-0
Abstract
Gears are a common part type for applications of the magnetic Barkhausen noise (MBN) techniques for nondestructive inspection. This article discusses the typical applications for MBN techniques, namely, detection of grinding retemper burn, evaluation of residual stresses, and detection of heat treatment defects, including the evaluation of case depth.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006465
EISBN: 978-1-62708-190-0
Abstract
Additive manufacturing (AM) is the process of joining materials to make parts from three-dimensional (3D) model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies. This article discusses various defects in AM components, such as porosity, inclusions, cracking, and residual stress, that can be avoided by using vendor recommended process parameters and approved materials. It describes the development of process-structure-property-performance modeling. The article explains the practical considerations in nondestructive evaluation for additively manufactured metallic parts. It also examines nondestructive testing (NDT) inspection and characterization methods for each of the manufacturing stages in their natural order. The article provides information on various inspection techniques for completed AM manufactured parts. The various electromagnetic and eddy current techniques that can be used to detect changes to nearsurface geometric anomalies or other defects are also discussed. These include ultrasonic techniques, radiographic techniques, and neutron imaging.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006389
EISBN: 978-1-62708-192-4
Abstract
This article discusses the application of friction stir processing (FSP) and friction surfacing for tribological components. It describes the three critical aspects involved in the application of FSP for near-surface material modifications intended for tribological applications. These include tools, processing parameters, and machines. The article also discusses the equipment and processing parameters for friction surfacing. It describes various hybrid stir processing techniques that involve preheating of the workpiece material, especially relatively hard and high-strength ones. The article presents a partial list of surface-modification methods based on FSP. The partial list includes surface hardening, surface composites, and additive coating. The article also provides information on generation of residual stresses in metallic materials and alloys form different variants of FSP.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006331
EISBN: 978-1-62708-179-5
Abstract
In cast iron, residual stresses normally arise due to hindered thermal contraction, meaning that they are associated with the presence of constraints that prevent the natural, free volumetric variation of the material upon solid-state cooling. This article explains their mechanism of formation by introducing the scalar relation, known as the additive strain decomposition. The main factors influencing casting deformation are volume changes during solidification and cooling, phase transformations, alloy composition, thermal gradients, casting geometry, and mold stability. The article reviews the dimensional stability in cast iron and discusses macroscopic and microscopic stresses in cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006326
EISBN: 978-1-62708-179-5
Abstract
This article discusses some of the factors that are linked directly to the casting design of ductile iron castings. It reviews the choice of molding process, application of draft, and patternmaker's allowance that should be taken into consideration in designing castings. The article describes the solidification shrinkage associated with the volume change that occurs during solidification, as well as strength and stiffness of ductile iron castings. It concludes with a discussion on the thermal deformation and residual stress in ductile iron castings.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
Abstract
Quenching is a widely used technique to strengthen titanium alloys. This article presents the metallurgical and structural background underlying the specific techniques applied in the quenching of various titanium alloys, and the ways to control and reduce residual stresses induced from quenching or other thermal or mechanical processes. It discusses the types and microstructures of titanium alloys, namely, alpha, alpha-beta, and beta alloys, and describes the general effects of the various heat treatments. The article provides information on quenching media, quenching rate, section size, and martensitic transformation in quenched titanium alloys. It shows how residual stresses in titanium alloys are evaluated and controlled. Finally, the article describes the stress-relief treatments used to reduce residual stresses.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006252
EISBN: 978-1-62708-169-6
Abstract
The presence of macroscopic residual stresses in heat treatable aluminum alloys can give rise to machining distortion, dimensional instability, and increased susceptibility to in-service fatigue and stress-corrosion cracking. This article details the residual-stress magnitudes and distributions introduced into aluminum alloys by thermal operations associated with heat treatment. The available technologies by which residual stresses in aluminum alloys can be relieved are also described. The article shows why thermal stress relief is not a feasible stress-reduction technology for precipitation-hardened alloys. It examines the consequences of aging treatments on the residual stress, namely, annealing, precipitation heat treatment, and cryogenic treatment. The article provides information on uphill quenching, which attempts to reverse thermal gradients encountered during quenching. It examines how quench-induced residual stresses in heat treatable aluminum alloys are reduced when sufficient load is applied to cause plastic deformation. The article also shows how plastic deformation reduces residual stress.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.9781627081696
EISBN: 978-1-62708-169-6
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005945
EISBN: 978-1-62708-168-9
Abstract
This article introduces the general principles and applications of heat treatment to iron castings. It provides a detailed discussion on the heat treatment processes, namely, stress relieving, annealing, normalizing, throughhardening, and surface hardening for various types of cast irons. These include gray iron, ductile iron, compacted graphite iron, white iron, malleable iron, and high-alloy iron. The article describes how to control temperature and atmosphere during the heat treatment of the iron castings.
1