Skip Nav Destination
Close Modal
By
George E. Totten, Eva Troell, Lauralice C.F. Canale, Rosa L. Simencio Otero, Xinmin Luo
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6
Polymer quenchants
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007003
EISBN: 978-1-62708-450-5
Abstract
This article presents the fundamentals and nomenclature of polymer quenchants and provides a detailed discussion on the polymers used for quenching formulation. The article describes the effect of polymer structure on the quenching mechanism. It also presents the factors affecting polymer quenchant performance. The article details the use of polymer quenchants for intensive quenching and then focuses on the wire patenting processes and polymer quenchant analysis. The article presents the application of polymer quenchants for induction hardening. Finally, it provides details on cooling curve analysis of polymer quenchants.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006506
EISBN: 978-1-62708-207-5
Abstract
The fundamental objective of quenching is to preserve, as nearly as possible, a metastable solid solution formed at the solution heat treating temperature, by rapidly cooling to some lower temperature, usually near room temperature. This article provides an overview of the factors used to determine a suitable cooling rate and the appropriate quenching process to develop a suitable cooling rate. It discusses the three distinct stages of quenching: vapor stage, boiling stage, and convection stage. The article reviews the factors that affect the rate of cooling in production operations. It discusses the quenchants that are used in quenching aluminum alloys, namely, hot or cold water and polyalkylene glycol. The article also describes the racking practices for controlling distortion and the level of residual stresses induced during the quench.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006260
EISBN: 978-1-62708-169-6
Abstract
Quenching refers to the rapid cooling of metal from the solution treating temperature, typically between 465 and 565 deg C (870 and 1050 deg F) for aluminum alloys. This article provides an overview on the appropriate quenching process and factors used to determine suitable cooling rate. It describes the quench sensitivity and severity of alloys, quench mechanisms and the different types of quenchants used in immersion, spray, and fog quenching. The article provides a detailed description of the quench-factor analysis that mainly includes residual stress and distortion, which can be controlled by proper racking. It concludes with information on agitation and the quench tank system used in the quenching of aluminum alloys.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005934
EISBN: 978-1-62708-166-5
Abstract
Successful hardening depends on the hardenability of steel composition, the geometry of parts, the quenching system, and on the heat treating process used. This article provides a brief overview of the computation and use of quench factor analysis (QFA) to quantify as-quenched hardness for carbon and low-alloy steels. As a single-value parameter alternative to Grossmann H-values, QFA is a potential method to qualify a quenching medium or process or to effectively monitor variation of quench severity due to either the quenchant or the system. The article describes the procedures for experimentally determining the quench factors by using a type 304 austenitic stainless steel probe. Typical examples of the utilization of QFA for quenchant characterization are provided. The article also describes the methods for experimentally generating time-temperature-property curves.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005932
EISBN: 978-1-62708-166-5
Abstract
This article describes various quenchants, namely, water and inorganic salt solutions, polymers (polyvinyl alcohol, polyalkylene glycol, polyethyl oxazoline, polyvinyl pyrrolidone and sodium polyacrylates), quench oils, and molten salts, which are used for heat treatment of ferrous alloys. It also provides information on the steps for controlling quenching performance for polymer quenchants and oils with an emphasis on measuring quenchant performance, safety measures, and oxidation.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005824
EISBN: 978-1-62708-165-8
Abstract
This article provides an overview of common quenching media, the factors involved in the mechanism of quenching, and process variables, namely, surface condition, mass and section size of the workpiece, and flow rate of the quenching liquid. It describes the methods of quenchant characterization using hardening-power and cooling-power tests. The article discusses the fundamentals involved in heat-transfer coefficient and heat flux of quenching processes. This discussion is followed by various actual examples of applications of these methods using simplified equations. Quenchant evaluation, classification, selection, and maintenance are reviewed in detail. The article addresses the various reasons for quench oil variability and complications due to aging and contamination.