Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Inductor crucible cold furnaces
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005907
EISBN: 978-1-62708-167-2
Abstract
This article provides an overview of the models of two induction heating devices, namely, induction crucible furnace (ICF) and induction furnace with slits, or segmented and water-cooled induction furnace with cold crucible (IFCC). These devices are used for melting with skull formation of low-conductivity materials such as glasses and oxides. The article presents the governing equations and boundary conditions for ICF and IFCC modeling. It includes a discussion on three electromagnetic field models in IFCC, namely, two-dimensional (2-D), quasi-three-dimensional, and three-dimensional (3-D) models. The article provides information on the simulation of skull formation in IFCC, and elucidates the transient axisymmetrical 2-D model and the transient 3-D model, including the primary results achieved for both glasses and skull formation.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005846
EISBN: 978-1-62708-167-2
Abstract
Magnetic flux controllers are materials other than the copper coil that are used in induction systems to alter the flow of the magnetic field. This article describes the effects of magnetic flux controllers on common coil styles, namely, outer diameter coils, inner diameter coils, and linear coils. It provides information on the role of magnetic flux controllers for whole-body and local area mass-heating applications, continuous induction tube welding, seam-annealing inductors, and various induction melting systems, namely, channel-type, crucible-type, and cold crucible systems. The article also describes the benefits of the flux controllers for induction heat treating processes such as single-shot and scanning.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005895
EISBN: 978-1-62708-167-2
Abstract
In the metal producing and processing industries, induction melting and holding has found wide acceptance. This article provides a detailed account of the physical principles of induction melting processes. It discusses the fundamental principles and components of induction furnaces such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction melting installations.