Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1
Recirculation fans
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005931
EISBN: 978-1-62708-166-5
Abstract
Heat treating furnaces require different control systems and integration for achieving optimum technical results and enabling safe operation. This article focuses on atmosphere furnaces, with some coverage on controls for vacuum furnaces. Heat treating operations require reliable monitoring and control of motion and position of various mechanical components with the help of mechanical limit switches, proximity sensors, and distance- and position-measuring devices. Using inputs from both flow meters and sensors, such as thermocouples and oxygen sensors, flow measurement control systems must be able to adjust the flow of gases for process optimization. The operator interface of a furnace-control system displays critical information such as the furnace temperature, atmosphere status, alarms, electronic chart recorders, recipe, and maintenance. A supervisory control and data-acquisition (SCADA) system is used to monitor, collect, and store data from multiple pieces of equipment.