Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-12 of 12
Shear testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006574
EISBN: 978-1-62708-290-7
Abstract
Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique that leverages the principles of ultrasonic welding, mechanized tape layering, and computer numerical control (CNC) machining operations to create three-dimensional metal parts. This article begins with a discussion on the process fundamentals and process parameters of UAM. It then describes metallurgical aspects in UAM. The article provides a detailed description of a wide range of mechanical characterization techniques of UAM, namely tensile testing, peel testing, and pushpin testing. The article ends with information on sensor embedding.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003443
EISBN: 978-1-62708-195-5
Abstract
This article provides the general mechanical testing guidelines for the characterization of lamina and laminate properties. Guidelines are provided for tensile property, compressive property, shear property, flexure property, fracture toughness, and fatigue property test methods. The article also tabulates selected standards for lamina and laminate mechanical testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003295
EISBN: 978-1-62708-176-4
Abstract
This article reviews the dynamic factors, experimental methods and setup, and result analysis of different types of high strain rate shear tests. These include high strain rate torsion testing, double-notch shear testing and punch loading, drop-weight compression shear testing, thick-walled cylinder testing, and pressure-shear plate impact testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003320
EISBN: 978-1-62708-176-4
Abstract
The main objective for the study of combined-stress fatigue is to obtain fatigue data for axles and to find the criterion for fatigue limit under combined stress. This article begins with a description of the stress states of combined stress and stress fields near crack tips. It provides an account of the various biaxial and multiaxial fatigue testing methods, specimen geometries, and stress intensity factors important in the study multiaxial fatigue. Widely used test methods are the torsion-rotating bending fatigue test and biaxial and triaxial fatigue tests. Common specimen geometries include rectangular plate specimens, cruciform specimens, compact tension shear specimens, compact shear specimens, mode II crack growth specimen, circumferentially notched cylindrical specimens, tubular specimens containing a slit, and solid cylindrical specimens containing a small hole or initial crack.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003325
EISBN: 978-1-62708-176-4
Abstract
This article discusses the standard test methods that can be applied to many types of welds: tension, bending, impact, and toughness testing. It provides information on four qualification stages, namely, the weld material qualification, base material qualification, the weld procedure qualification, and the weld service assessment. The article describes two general types of measurements for residual stress in welds: locally destructive techniques and nondestructive techniques. Locally destructive techniques include hole drilling, chip machining, and block sectioning. Nondestructive techniques include X-ray diffraction, neutron diffraction, Barkhausen noise analysis, and ultrasonic propagation analysis. The article concludes with an overview of weldability testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003269
EISBN: 978-1-62708-176-4
Abstract
This article reviews the common methods of shear and multiaxial testing for the evaluation of engineering components such as fasteners and mill products. It discusses shear test methods, including through-thickness tests, in-plane shear tests, and double-notched shear test. The article provides information on torsional (rotational shear) tests as well as the basic equipment and setup of torsion testing. Motors, twist and torque transducers, torque sensors, and heating systems as well as the specimen preparation procedure are also discussed.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003257
EISBN: 978-1-62708-176-4
Abstract
An integral aspect of designing and material selection is the use of mechanical properties derived from various mechanical testing. This article introduces the basic concepts of mechanical design and its relation with the properties derived from various mechanical testings, namely, tensile, compressive, hardness, torsion and bend, shear load, shock, and fatigue and creep testings. It describes the design criteria for combined properties derived from each of the mechanical testing. The article concludes with a discussion on the effect of environment on the mechanical properties.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
Abstract
This article begins with a review of the purposes of mechanical characterization tests and the general considerations related to the mechanical properties of anisotropic systems, specimen fabrication, equipment and fixturing, environmental conditioning, and analysis of test results. It provides information on the specimen preparation, instrumentation, and procedures for various mechanical test methods of fiber-reinforced composites. These include the compression test, flexure test, shear test, open hole tension test, and compression after impact test. The article describes three distinct fracture modes, namely, crack opening mode, shearing mode, and tearing mode. It presents an overview of fatigue testing and fatigue damage mechanisms of composite materials and reviews the types of mechanical measurements that can be made during the course of testing to assess fatigue damage. The article concludes with a discussion on the split-Hopkinson pressure bar test.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003324
EISBN: 978-1-62708-176-4
Abstract
Adhesive joints involve joining parts by bonding component parts together with an adhesive. This article provides a discussion on the purpose of testing adhesive joints and on the factors influencing mechanical strength of these joints. It describes the various tests used in the measurement of adhesive joint strength. These include qualitative tests, peel tests, lap shear tests, tensile tests, and adhesive fracture mechanics tests.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003044
EISBN: 978-1-62708-200-6
Abstract
Testing of fiber-reinforced composite materials is performed to determine uniaxial tensile strength, Young's modulus, and Poisson's ratio relative to principal material directions, that helps in the prediction of the properties of laminates. Beginning with an overview of the fundamentals of tensile testing of fiber-reinforced composites, this article describes environmental exposures that often occur during specimen preparation and testing. These include exposures during specimen preparation, and planned exposure such as moisture, damage (impact), and thermal cycling techniques. The article also discusses the test procedures, recommended configurations, test specimen considerations, and safety requirements considered in the four major types of mechanical testing of polymer-matrix composites: tensile test, compression test, flexural test, and shear test.