Skip Nav Destination
Close Modal
By
Brian Macejko
By
R.A. Nixon
By
Guy D. Davis, Chester M. Dacres, Lorrie A. Krebs
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Storage tanks
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Brittle Fracture Assessment and Failure Assessment Diagrams
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
Abstract
A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility to brittle fracture. Additionally, a series of case study examples are presented that demonstrate assessment procedures used to mitigate the risk of brittle fracture in process equipment.
Book Chapter
Guidance for the Use of Protective Coatings in Municipal Potable Water Systems
Available to PurchaseSeries: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006040
EISBN: 978-1-62708-172-6
Abstract
This article presents information regarding the use of protective coatings in municipal potable water systems, including raw water collection and transmission, water treatment plants, and treated water distribution. It provides useful guidance for the selection and use of protective coatings in these municipal water systems. The most commonplace corrosion-damage mechanisms are highlighted. The article describes the most common materials of construction found in municipal water systems, namely, cast iron, ductile iron, carbon steel, precast concrete cylinder pipe and reinforced concrete pipe, prestressed concrete tanks, and stainless steel. It provides information on the most common generic coating systems used for new steel tanks and water storage tanks. It concludes with a discussion of quality watch-outs when selecting or using protective coatings in municipal water systems.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004113
EISBN: 978-1-62708-184-9
Abstract
Steel storage tanks are the primary means for storing large volumes of liquids and gaseous products. The stored fluid could be water, but it could also be volatile, corrosive, and flammable fluid requiring special precautions for storage as well. Corrosion is generally worst where the tank is in contact with the soil. This article describes the soil characteristics and addresses cathodic protection (CP) criteria for submerged metallic piping systems. It provides information on the data required for designing a CP system, alone or in conjunction with a protective coating system. These data are collected from predesign site assessments, tank electrical characteristics, and soil-resistivity measurements. The article addresses NACE Standard RP0169, which gives requirements and desired characteristics for coating in conjunction with CP. It also explains the methods of protecting aboveground storage tanks and underground storage tanks.
Book Chapter
Electrochemical Techniques for In-Service Corrosion Monitoring
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003654
EISBN: 978-1-62708-182-5
Abstract
A variety of electrochemical techniques are used to detect and monitor material deterioration in service or in the field. This article describes the static or direct current measurements in a number of applications, including buried pipelines and storage tanks. It reviews the electrochemical impedance spectroscopy and electrochemical noise measurements in a laboratory, especially for the inspection of coatings.