Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Nitinol
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007028
EISBN: 978-1-62708-387-4
Abstract
This article focuses on the fractography of Nitinol, a shape memory alloy of nickel and titanium, in superelastic biomedical applications, which primarily comprise drawn and/or laser-cut wire and tube components. Overload fracture, hydrogen embrittlement fracture, and fatigue fracture are discussed in detail.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
Abstract
This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article explains the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005657
EISBN: 978-1-62708-198-6
Abstract
This article focuses on the analysis of materials and mechanical- (or biomechanical-) based medical device failures. It reviews the failure analysis practices, including evidence receipt, cleaning, nondestructive examination, destructive examination, exemplars analysis, and device redesign. The article examines the common failure modes, such as overload, fatigue, corrosion, hydrogen embrittlement, and fretting, of medical devices. The failure analysis of orthopedic implants, such as permanent prostheses and internal fixation devices, is described. The article reviews the failure mechanisms in some of the more common medical device materials, namely, stainless steels, titanium alloys, cobalt-base alloys, and nitinol. It presents case histories with examples for failure analysis.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001100
EISBN: 978-1-62708-162-7
Abstract
This article discusses the history of shape memory alloys (SMAs) along with their properties, capabilities, and crystallography, including phase transformations that occur during thermal treatment. It describes the thermomechanical behaviors of SMAs and explains how to characterize them using differential scanning calorimeter (DSC) techniques as well as other methods. The article examines the most common shape memory alloys, namely, nickel-titanium and copper-base SMAs, and provides information on their respective properties.