Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 87
Powder metal products
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007027
EISBN: 978-1-62708-387-4
Abstract
This article focuses on the fractography features of the conventional powdered metal (PM) process for ferrous powders. It discusses porosity, which is one of the inherent features present in components produced by conventional press-and-sinter processes, and green cracks, which are the most common fracture issue in conventional PM processes. It explains the effect of post-sintering operations. The article also presents the common ferrous powder metallurgy materials.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007021
EISBN: 978-1-62708-439-0
Abstract
This article provides an overview of the supply chain for metallic additively manufactured materials, with an emphasis on spherical alloy powders. The article describes powder production processes as well as the various metal alloys that can be produced using powder AM techniques. It also reviews the basic characteristics of powder feedstocks and the management of metallic powders.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.9781627084390
EISBN: 978-1-62708-439-0
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006907
EISBN: 978-1-62708-392-8
Abstract
Additive manufacturing (AM) techniques include powder-bed fusion (PBF), directed-energy deposition, binder jetting (BJ), extrusion-based desktop, vat photopolymerization, material jetting, and sheet lamination. The development of suitable powders for AM is a challenging task because of critical design parameters including chemical composition, flowability of powders, and melt surface tension. This article explains the fabrication methods of metal and novel alloy powders for medical applications. The development of zirconium alloy powder for laser-PBF is introduced as a case study.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.9781627082907
EISBN: 978-1-62708-290-7
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006544
EISBN: 978-1-62708-290-7
Abstract
During metal powder production, powder and/or dust handling, compaction, and part finishing operations, many safety and environmental risks exist. This article is a detailed account of the types of safety hazards that can exist and the issues that occur during metal powder handling, as well as recommendations and strategies that can be employed to both prevent and protect against damaging effects from powder exposure, fire and/or explosions, or environmental impact events.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006556
EISBN: 978-1-62708-290-7
Abstract
The additive manufacturing technologies in the casting of precious metals are divided into two groups: indirect metal methods and direct metal methods. Besides providing a process overview of both of these methods, the focus of this article is on the characteristics, process steps, applications, and advantages of direct metal methods, namely laser melting, material extrusion, binder jetting, material jetting, and vat photopolymerization methods.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006567
EISBN: 978-1-62708-290-7
Abstract
This article provides an overview of the general methods of metal powder production. It details the primary methods for particle sizing used in additive manufacturing: sieving, laser diffraction and scattering, and digital image analysis. Methods of interpreting and understanding particle size distribution (PSD) data are presented, with an emphasis on the differences between count- and volume-based PSDs. The article then outlines practices for both qualitative and quantitative assessment of particle morphology.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006573
EISBN: 978-1-62708-290-7
Abstract
Traditional processing methods for the part production of Co-Cr alloys include casting, powder metallurgy, and metal forming. However, the steps involved during materials processing followed by metal forming and machining are time consuming and fraught with processing variables. Three-dimensional (3D) printing enables rapid evolution in design, personalization, and so on. This article presents a brief description of some common additive manufacturing (AM) processes for the production of cobalt alloy parts, and provides a comparison between AM and conventional processing methods. The discussion is centered on process-microstructure-properties correlation in additively manufactured cobalt alloys and applications of these alloys.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006576
EISBN: 978-1-62708-290-7
Abstract
This article provides a brief overview of additive manufacturing (AM) of tool steels via various AM technologies such as laser powder bed fusion, electron powder bed fusion, blown powder directed energy deposition, and binder jet AM. The discussion includes process overview and covers the mechanism, advantages, and applications of each of these techniques.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
Abstract
This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices, copper alloys used, selected applications, material properties, and where applicable, compares these data and properties to traditionally processed materials. The data presented and the surrounding discussion focus on bulk metallurgical processing of copper components. The discussion covers the composition and performance criteria for copper alloys that have been reported for AM and discusses key differences in process-structure-property relationships compared to conventionally processed material. The article also provides information on feedstock considerations for copper powder handling.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006582
EISBN: 978-1-62708-290-7
Abstract
This article covers the current state of materials development of nickel-base superalloys for additive manufacturing (AM) processes and the associated challenges. The discussion focuses on nickel-base superalloy fusion AM processes, providing information on typically encountered cracking mechanisms in AM nickel-base superalloys, such as solid-solution-strengthened nickel-base superalloys and precipitate-strengthened nickel-base superalloys. The mechanisms include solidification cracking, strain-age cracking, liquation cracking, and ductility-dip cracking. The article also provides a short discussion on binder jet AM and powder recyclability.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006621
EISBN: 978-1-62708-290-7
Abstract
This article focuses on a study that was performed to understand the effects of powder attributes; process parameters; and hot isostatic pressing (HIP) treatment on the densification, mechanical and corrosion properties, and microstructures of 17-4 PH stainless steel gas- and water-atomized laser-powder bed fusion (LPBF) parts at various energy densities. The results from the study showed the strong dependence of densification, mechanical properties, and microstructures on temperature, pressure, and time during the HIP cycle. The density, ultimate tensile strength, hardness and yield strength of gas and water-atomized LPBF parts increased due to HIP treatment and were higher than as-printed properties. The results also confirmed superior corrosion performance of the HIP treated LPBF parts.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006649
EISBN: 978-1-62708-213-6
Abstract
This article uses metal and alloy powders as examples to briefly discuss how to perform the characterization of powders. It begins by reviewing some of the techniques involved in the sampling of powders to ensure accurate characterization. This is followed by a discussion on the important properties to characterize powders, namely the particle size, surface area, density, porosity, particle hardness, compressibility, green strength, and flowability. For characterization of powders, both individual particles and bulk powders are used to evaluate their physical and chemical properties. The article also discusses the important characteristics and compositions of powder as well as impurities that directly affect powder properties. It ends with a description of the ignition and dust-explosion characteristics of organic and metal powders.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006497
EISBN: 978-1-62708-207-5
Abstract
Aluminum powders can be formed into components by several competing technologies, including powder metallurgy (PM), metal injection molding, powder forging, and additive manufacturing. This article explores PM methodologies that are being exploited to manufacture such components. It reviews emerging technologies that promise to offer exciting ways to produce aluminum parts. The article discusses the various steps involved in PM, such as powder production, compaction, sintering, repressing, and heat treatment. It provides information on aluminum production statistics and the wear-resistance applications of PM.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006445
EISBN: 978-1-62708-190-0
Abstract
The potential for introducing defects during processing becomes greater as the relative density of pressed and sintered powder metallurgy (PM) parts increases and more multilevel parts with complex geometric shapes are produced. This article discusses the potential defects in pressed and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography, and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density determination, and visual inspection.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006417
EISBN: 978-1-62708-192-4
Abstract
Tool steels are carbon, alloy, and high-speed steels that can be hardened and tempered to high hardness and strength values. This article discusses the classifications of commonly used tool steels: water-hardening tool steels, shock-resisting tool steels, cold-work tool steels, and hot-work tool steels. It describes four basic mechanisms of tool steel wear: abrasion, adhesion, corrosion, and contact fatigue wear. The article describes the factors to be considered in the selection of lubrication systems for tool steel applications. It also discusses the surface treatments for tool steels: carburizing, nitriding, ion or plasma nitriding, oxidation, boriding, plating, chemical vapor deposition, and physical vapor deposition. The article describes the properties of high-speed tool steels. It summarizes the important attributes required of dies and the properties of the various materials that make them suitable for particular applications. The article concludes by providing information on abrasive wear and grindability of powder metallurgy steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006124
EISBN: 978-1-62708-175-7
Abstract
This article discusses the pressing and sintering of various refractory metal powders for the production of intermediate products as well as special cases of finished products. The metal powders considered include tungsten, molybdenum, tantalum, niobium and their alloys, as well as rhenium.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006088
EISBN: 978-1-62708-175-7
Abstract
Blending of powders is defined as the thorough intermingling of powders of the same nominal composition. Premixing is the preparation of a uniform mixture of two or more components. This article provides information on the blending and premixing variables required to produce adequate results in the powder mixture. It describes the effects of metal powder characteristics on blending and mixing: particle size, shape, density, and surface features. The article also provides information on the equipment, tumble-type blenders, and low-shear agitated-type blenders used for blending and premixing solids.
1