Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-12 of 12
Coated metal products
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
Abstract
Cast irons provide excellent resistance to a wide range of corrosion environments when properly matched with that service environment. This article presents basic parameters to be considered before selecting cast irons for corrosion services. Alloying elements can play a dominant role in the susceptibility of cast irons to corrosion attack. The article discusses the various alloying elements, such as silicon, nickel, chromium, copper, and molybdenum, that enhance the corrosion resistance of cast irons. Cast irons exhibit the same general forms of corrosion as other metals and alloys. The article reviews the various forms of corrosions, such as graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. It discusses the four general categories of coatings used on cast irons to enhance corrosion resistance: metallic, organic, conversion, and enamel coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004162
EISBN: 978-1-62708-184-9
Abstract
This article discusses the commonly encountered forms of automotive body corrosion. The corrosion forms include general or uniform corrosion, cosmetic or under-film corrosion, galvanic corrosion, crevice corrosion, poultice or under-deposit corrosion, and pitting corrosion. Corrosion-resistant sheet metals, such as electrogalvanized steel, hot dip galvanized steel, and hot dip galvannealed steel, are reviewed. The article provides information on the paint and sealant systems for corrosion control in automotive body applications.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005164
EISBN: 978-1-62708-186-3
Abstract
This article provides an overview of some common sheet steel coatings available. It discusses the formability differences between coated and bare steel and provides some general guidelines on the forming of coated steels. Coated steels are classified according to the nature of the substrate, the type of coating, and the method used for its application. The article describes various coating types for steels such as zinc-coated steels, aluminum-coated steels, tin-coated steels, terne-coated steels, and organic-coated steels.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
Abstract
From the standpoint of corrosion protection of iron and steel, metallic coatings can be classified into two types: noble coatings and sacrificial coatings. This article focuses on hotdipped zinc, aluminum, zinc-aluminum alloy and aluminum-zinc alloy coatings. It discusses the Sendzimir process and the Cook-Norteman process, which are the two commercial processes that are used for almost all hot-dip galvanized sheet steel in the United States. The article provides a discussion on the aqueous corrosion and atmospheric corrosion of galvanized steel and aluminized steel, as well as the intergranular corrosion of galvanized steel.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003809
EISBN: 978-1-62708-183-2
Abstract
This article describes the paint systems generally used to protect steel structures, steel sheet, and bridges from corrosion, and how they deter corrosion. It provides a discussion on the basic design criteria of steel structures for corrosion protection. The article also explains the differences between prepaint and postpaint, and the steps involved in prepaint processing of steel. It presents the selection guideline for paint system evaluation. The advantages of corrosion protection are also discussed.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003761
EISBN: 978-1-62708-177-1
Abstract
This article reviews various phases and constituents found in the microstructures of low-carbon and coated steels. It provides information on the criteria for selecting proper metallographic procedures. Techniques used to prepare metallographic specimens of low-carbon steels and coated steels, such as sectioning, mounting, grinding, polishing, and etching, are discussed. The article also reviews the simple and proven manual sample preparation techniques of coated steel specimens.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003678
EISBN: 978-1-62708-182-5
Abstract
Phosphating is used in the metalworking industry to treat substrates like iron, steel, galvanized steel, aluminum, copper, and magnesium and its alloys. This article provides an overview of the types, uses, and theory of phosphate coatings and their formation. It also discusses the composition of phosphating baths, phosphate layers, and their analysis, as well as the process hardware necessary to realize these treatments. A summary of the different types of phosphate layers is tabulated, and the chemical formulas for a number of different phosphate compounds that are theoretically possible in crystalline phosphate layers are illustrated. The article presents four chemically important phosphating steps, namely, cleaning, activation or conditioning, phosphating, and posttreatment plus standard rinsing. It describes the physical and chemical properties by gravimetric analysis, chemical analysis, structure and morphology, thermal analysis, and alkaline resistance.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003689
EISBN: 978-1-62708-182-5
Abstract
This article provides a discussion on the two basic steps of the batch hot dip galvanizing process: surface preparation and galvanizing. It describes the factors affecting coating thickness and coating structure. The mechanical properties of the coating and steel substrate are also discussed. The article also provides information on the various factors that should be considered before galvanizing a material. It examines the performances of galvanized coatings in corrosion service. The joining of galvanized structural members by bolting and welding is also discussed. The article describes the synergistic effects of galvanized and painted systems. It explains the applications of hot dip galvanized steel. The article concludes with information on pertinent galvanizing specifications under the authority of the American Society for Testing and Materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003235
EISBN: 978-1-62708-199-3
Abstract
Microwaves (or radar waves) are a form of electromagnetic radiation with wavelengths between 1000 cm and 1 mm in free space. One of the first important uses of microwaves in nondestructive evaluation was for components such as waveguides, attenuators, cavities, antennas, and antenna covers (radomes). This article focuses on the microwave inspection methods that were subsequently developed for evaluation of moisture content in dielectric materials; thickness measurements of thin metallic coatings on dielectric substrates; and detection of voids, delaminations, macroporosity, inclusions, and other flaws in plastic or ceramic materials. It also discusses the advantages and disadvantages and the general approaches that have been used in the development of microwave nondestructive inspection.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001017
EISBN: 978-1-62708-161-0
Abstract
This article begins with an overview of steel wire configurations and sizes followed by a discussion on various wiremaking practices. The wiredrawing operation is discussed, including cleaning, die design, use of lubricants and welds, finishes, coating, and thermal treatments. Metallic coatings can be applied to wire by various methods, including hot dip processes, electrolytic process, and metal cladding by rolling metallic strip over the wire. These wires are normally grouped into broad usage categories. These categories, as well as some items in each category, are described in the article under their quality descriptions or commodity names. These include low-carbon steel wire for general usage, wire for structural applications, wire for packaging and container applications, wire for prestressed concrete, wire for electrical or conductor applications, rope wire, mechanical spring wire for general use, wire for fasteners, mechanical spring wire for special applications, upholstery spring construction wire, and alloy wire.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001012
EISBN: 978-1-62708-161-0
Abstract
Steel sheet is often coated in coil form prior to fabrication to save time, reduce production costs, and streamline operations. This article examines the most common precoating methods and provides a metallurgical understanding of how they impact the manufacturability, performance, and service life of the host material. The article covers metallic coatings, including zinc, aluminum, zinc-aluminum alloys, tin, and terne; pretreatment or phosphate coatings; and preprimed and painted finishes based on organic coatings.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001031
EISBN: 978-1-62708-161-0
Abstract
Steel sheet is widely used for industrial and consumer products, partly because it is relatively strong, easily joined, and readily available at moderate cost. This article discusses the mechanical properties and formability of steel sheet, the use of circle grid analysis to identify the properties of complicated shapes, and various simulative forming tests. The mechanical properties of steel sheet that influence its forming characteristics, either directly or indirectly, can be measured by uniaxial tension testing. The article covers the effects of steel composition, steelmaking practices, and metallic coatings, as well as the correlation between microstructure and formability. A guide to the selection of steel sheet is also included. The formability of steel sheet is related to various microstructural features of the sheet. The article describes some of the forming characteristics of the more commonly used formable grades. It also lists the typical mechanical properties for common grades of hot-rolled and cold-rolled steel sheets.