Skip Nav Destination
Close Modal
By
Pierre DuPont, Steven Lampman
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6
Plain bearings
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
Abstract
A mechanical part, which supports the moving part, is termed a mechanical bearing and can be classified into rolling (ball or roller) bearings and sliding bearings. This article discusses the failures of sliding bearings. It first describes the geometry of sliding bearings, next provides an overview of bearing materials, and then presents the various lubrication mechanisms: hydrostatic, hydrodynamic, boundary lubrication, elastohydrodynamic, and squeeze-film lubrication. The article describes the effect of debris and contaminant particles in bearings. The steps involved in failure analysis of sliding bearings are also covered. Finally, the article discusses wear-damage mechanisms from the standpoint of bearing design.
Book Chapter
Acoustical Holography
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006474
EISBN: 978-1-62708-190-0
Abstract
Acoustical holography is the extension of holography into the ultrasonic domain. The basic systems for acoustical holography are the liquid-surface type and the scanning type. This article discusses the applications for acoustical holography, including inspection of large composite parts, through-transmission breast imaging system, inspection of welds in thick materials, and inspection of sleeve-bearing stock. It describes the basic system for liquid-surface acoustical holography and scanning acoustical holography. A comparison between these techniques is also provided.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006362
EISBN: 978-1-62708-192-4
Abstract
This article describes the characteristics of three types of gas bearings, such as aerostatic bearing, precision aerodynamic bearing (PAB), and compliant aerodynamic bearing (CAB). It discusses the applications for aerostatic bearings and advantages in lubricating a bearing with a compressible gas. The article also describes the different types of aerostatic bearings, such as annular thrust bearings and orifice-compensated journal bearings. It presents a discussion on load capacity and stiffness, friction and power loss, and stability and damping of the aerostatic bearings. The article provides a discussion on the types of PAB and CAB. The types include spiral groove annular thrust bearings, cylindrical journal bearings, three-sector journal bearings, tilting-pad journal bearings, and helical-grooved journal bearings. The types of CAB include foil bearings and pressurized-membrane bearings. The article concludes with a description of factors that influence materials selection for gas-lubricated bearings.
Book Chapter
Friction and Wear of Rolling-Element Bearings
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006426
EISBN: 978-1-62708-192-4
Abstract
Rolling-element bearings, also called rolling bearings and antifriction bearings, tend to have very low friction characteristics compared to plain bearings or simple sliding bearings. This article discusses the types of rolling-element bearings, namely, ball bearings and roller bearings. It provides information on the bearing component materials. The article describes the lubrication requirements and lubrication methods, namely, elastohydrodynamic lubrication and grease lubrication. It reviews the adjustment factors influencing fatigue life of the bearing. The article also provides information on bearing load ratings, standard bearing geometries, rolling bearing friction factors, and wear and its control methods. It concludes with a discussion on damage modes of bearings.
Book Chapter
Metallography and Microstructures of Lead and Its Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003773
EISBN: 978-1-62708-177-1
Abstract
This article describes the various specimen preparation procedures for lead, lead alloys, and sleeve bearings, including sectioning, mounting, grinding, polishing, and etching. The microscopic examination and microstructures of lead and lead alloys are discussed. The article also provides information on the microstructures of sleeve bearing materials.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003326
EISBN: 978-1-62708-176-4
Abstract
This article provides an overview of two major classes of bearings: rolling bearings and sliding, or plain, bearings. It reviews the experimental data resulted from testing of rolling and sliding bearing materials with illustration. The article presents a table that summarizes rolling contact fatigue test methods that ASTM published in STP 771. It also describes the role of lubrication in the bearings.