Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 20
Grinding wheels
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006024
EISBN: 978-1-62708-172-6
Abstract
This article reviews the steps involved in presurface-preparation inspection: substrate replacement; removal of weld spatter, rounding of sharp edges, and grinding of slivers/laminations; and removal of rust scale, grease, oil, and chemical (soluble salt) contamination. It focuses on surface preparation methods that range from simple solvent cleaning to hand and power tool cleaning, dry and wet abrasive blast cleaning, centrifugal wheel blast cleaning, chemical stripping, and waterjetting for the application of the coating system. In addition, the article provides a description of the Society for Protective Coatings' (SSPC) standards and NACE International standards as well as the International Organization for Standardization (ISO) standards and International Concrete Repair Institute (ICRI) guidelines for surface cleanliness.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005729
EISBN: 978-1-62708-171-9
Abstract
Metallographic examination is a critical step in the assessment of thermal spray coating characteristics. This article discusses the major steps involved in metallographic examination: sectioning, mounting, grinding, polishing, optical microscopy, and image analysis. It provides a discussion on etching to reveal grain structure. The article also provides recommendations for metallographic examination of some standard coatings.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005629
EISBN: 978-1-62708-174-0
Abstract
A key differentiator between friction stir welding (FSW) and other friction welding processes is the presence of a nonconsumable tool in FSW, often referred to as a pin tool to differentiate it from other tooling associated with the process. This article discusses materials for friction stir welding (FSW) pin tools, various tool geometries that have been used, designs for specific applications, predicting and measuring tool performance, and other considerations in FSW pin tool design. The tool materials include tool steels, superalloys, refractory metals, carbides and ceramics, and superabrasives.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
Abstract
In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations, standard marking systems, abrasives, and bonding types. It compares bonded wheel grinding with abrasive belt grinding. The article reviews the types of grinding fluids and discusses their importance in grinding operations. It describes the specific grinding processes and provides recommendations for grinding and grinding wheels.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001228
EISBN: 978-1-62708-170-2
Abstract
Mechanical cleaning systems are used to remove contaminants of work surface by propelling abrasive materials through any of these three principal methods: airless centrifugal blast blade- or vane-type wheels; compressed air, direct-pressure dry blast nozzle systems; or compressed-air, indirect-suction (induction) wet or dry blast nozzle systems. This article focuses on the abrasive media, equipment, applications, and limitations of dry and wet blast cleaning. It discusses the health and safety precautions to be taken during mechanical cleaning.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
Abstract
Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive products and materials, abrasive finishing processes, and the mechanisms of delivering the abrasives to the grinding or machining zone. Abrasive finishing processes, such as grinding, honing, superfinishing, microgrinding, polishing, buffing, and lapping, are discussed. The article presents a brief discussion on abrasive jet machining and ultrasonic machining. It concludes with a discussion on the four categories of factors that affect the abrasive finishing or machining: machine tool, work material, wheel selection, and operational.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001234
EISBN: 978-1-62708-170-2
Abstract
Mass finishing normally involves loading components to be finished into a container together with abrasive media, water, and compound. This article focuses on basic mass finishing processes, including barrel finishing, vibratory finishing, centrifugal disc and barrel finishing, spindle finishing, and drag finishing. It describes the various factors considered in selecting the most suitable mass finishing process. The article also provides information on consumable materials, process considerations, safety precautions, and waste disposal of mass finishing processes.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001106
EISBN: 978-1-62708-162-7
Abstract
Synthetic diamond and cubic boron nitride are among a class of superhard materials from the boron-carbon-nitrogen-silicon family of elements. This article focuses on the two materials, the forms in which they are produced, and their respective properties. Synthetic diamond and cubic boron nitride compounds are available in the form of grit and sintered polycrystalline blanks of various size, shape, and composition. The article explains how superabrasive grains made from these materials can be used in lapping, polishing, and grinding applications, and how diamond and boron nitride blanks can be mounted to suitable substrates to form ultrahard cutting edges and tools.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001104
EISBN: 978-1-62708-162-7
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets. Almost 50% of the total production of cemented carbides is used for nonmetal cutting applications. Their properties also make them appropriate materials for structural components, including plungers, boring bars, powder compacting dies and punches, high-pressure dies and punches, and pulverizing hammers. This article discusses the manufacture, microstructure, composition, classifications, and physical and mechanical properties of cemented carbides, as well as their machining and nonmachining applications. It examines the relationship between the workpiece material, cutting tool and operational parameters, and provides suggestions to simplify the choice of cutting tool for a given machining application. It also examines new tool geometries, tailored substrates, and the application of thin, hard coatings to cemented carbides by chemical vapor deposition and physical vapor deposition. It discusses the tool wear mechanisms and the methods available for holding the carbide tool. The article is limited to tungsten carbide cobalt-base materials.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002156
EISBN: 978-1-62708-188-7
Abstract
Abrasive jet machining (AJM) is a process that removes material from a workpiece through the use of abrasive particles entrained in a high-velocity gas stream. This article discusses the operation of principal components, advantages, and disadvantages of the AJM system. It describes several factors that determine the characteristics of the AJM process. These include flow rates of the jet stream, type and size of abrasive powders, and distance between the workpiece and nozzle.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002141
EISBN: 978-1-62708-188-7
Abstract
This article discusses the various elements of thread grinding processes, including thread grinding machines, tolerances, wheel selection, grinding speed, and grinding fluids. It describes truing of grinding wheels and reviews the process applications. In addition, the article describes the five basic methods employed for cylindrical thread grinding, namely, single-rib wheel traverse grinding, multirib wheel traverse grinding, multirib wheel plunge grinding, multirib wheel skip-rib, or alternate-rib, grinding, and multirib wheel three-rib grinding. It also provides an overview of centerless grinding of threads and high-volume applications of thread grinding.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002157
EISBN: 978-1-62708-188-7
Abstract
Abrasive flow machining (AFM) finishes surfaces and edges by extruding viscous abrasive media through or across the workpiece. This article commences with a schematic illustration of the AFM process that uses two opposed cylinders to extrude semisolid abrasive media back and forth through the passages formed by the workpiece and tooling. It discusses the major elements of an AFM system, such as machine, tooling, and abrasive media. The article provides information on polishing, radiusing, edge finishing, and surface finishing capabilities of the AFM. It concludes with information on the various applications of the AFM process.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002166
EISBN: 978-1-62708-188-7
Abstract
Electrical discharge grinding (EDG) is much like electrical discharge machining except that the electrode (tool) is a rotating graphite wheel. This article commences with a schematic illustration of a setup for EDG wheels and discusses the control operation of the EDG setup. It tabulates typical applications and conditions for the EDG of stainless steels using 300 mm diameter wheels. The article describes the process characteristics of the EDG in terms of applications, surface finish, corner radius, and wheel wear. It concludes with a graphical illustration of the effect of heat in electrical discharge grinding on the surface hardness of various work metals.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002161
EISBN: 978-1-62708-188-7
Abstract
This article describes the various characteristics of electrochemical grinding (ECG). It discusses grinding methods that can be performed with ECG components, namely, the electrolyte delivery and circulating system, the electrolyte, the DC power supply, grinding wheel, and the workpiece. Grinding, surface grinding, internal grinding, form grinding, and cylindrical grinding are discussed. The article also lists the advantages, disadvantages, and applications of ECG.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002162
EISBN: 978-1-62708-188-7
Abstract
Electrochemical discharge grinding (ECDG) is a combination of electrochemical grinding (ECG) and electrical discharge grinding (EDG), with some modification of each. This article commences with a schematic illustration of a setup for ECDG using a solid bonded graphite wheel. It describes the process characteristics of ECDG in terms of current density, wheel speed, wear ratio, accuracy and finish, wheel maintenance, and profile grinding. The article concludes with a comparison of ECDG with EDG and ECG.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002177
EISBN: 978-1-62708-188-7
Abstract
This article discusses the factors to be considered in selecting and evaluating machining tests for the purpose of evaluating cutting tool performance and workpiece machinability. It provides a brief description of cutting tool materials, such as high-speed steels, uncoated and coated carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. The article considers the matrices that represent the range of tests performed on candidate cutting tool materials: the workpiece matrix, the property matrix, and the operation matrix. Various machine tests used to evaluate cutting tools, including the impact test, turning test, and facing test, are described. The article lists the factors to be taken into consideration in measuring the machinability of a material. The article presents general recommendations for proper chip groove selection on carbide tools and concludes with information on machining economics.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002151
EISBN: 978-1-62708-188-7
Abstract
Metal is removed from the workpiece by the mechanical action of irregularly shaped abrasive grains in all grinding operations. This article discusses three primary components of grinding wheels, namely, abrasive (the cutting tool), bond (the tool holder), and porosity or air for chip clearance and/or the introduction of coolant. It describes the compositions and applications of coated abrasives and types of grinding fluids, such as petroleum-base and mineral-base cutting oils, water-soluble oils, synthetic fluids, semisynthetic fluids, and water plus additives. The article concludes with information on different types of grinding processes, namely, rough grinding, precision grinding, surface grinding, cylindrical grinding, centerless grinding, internal grinding, and tool grinding.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002152
EISBN: 978-1-62708-188-7
Abstract
Superabrasives collectively refer to the diamond and cubic boron nitride (CBN) abrasives used in grinding applications. This article discusses the classification of superabrasive wheels according to a variety of sizes and shapes, construction, concentration, and bond systems. It provides information on the applications of the superabrasive wheels depending on the factors of the grinding system. These factors include machine tool variables, work material, wheel selection, and operational factors. The article describes the methods available for superabrasive wheel truing in production grinding operations, namely, stationary tool, powered, and form truings. It reviews the truing methods, such as truing with abrasive wheels and hard ceramics, for batch production. The article explains practical methods available for dressing CBN wheels, namely, abrasive stick, abrasive-jet, slurry, and high-pressure waterjet dressing. It concludes with information on the conditioning process of the CBN wheel.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002154
EISBN: 978-1-62708-188-7
Abstract
Lapping is the lower-pressure, lower-speed, and lower-power application of the use of fixed abrasives. This article begins with a discussion on the process capabilities of lapping and reviews the selection of abrasive and vehicle for lapping. It describes the methods of lapping outer cylindrical surfaces, namely, ring lapping, machine lapping between plates, centerless roll lapping with loose abrasives, and centerless lapping with bonded abrasives. In addition, the article discusses the methods employed for lapping of outer surfaces of piston rings, crankshafts, inner cylindrical surfaces, flat surfaces, end surfaces, spherical surfaces, balls, spring like parts, and gears. It also reviews the problems in flat and end lapping. The article concludes information on the use of lapping in accelerated wearing-in process for matching and aligning components of bearing assemblies.