Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 26
Grinding machines
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006348
EISBN: 978-1-62708-179-5
Abstract
This article presents typical wear applications for a variety of cast iron grades in a table. In general, wear is classified according to three major types: adhesive (frictional) wear (sliding and rolling) caused by contact of one metallic surface with another; abrasive wear caused by contact with metallic (shots, swarf) or nonmetallic abrasive materials; and erosive wear. The article discusses general wear characteristics of gray iron, compacted gray iron, and ductile iron. It provides information on the brake lining chemistry effects, graphite morphology effects, normal cast iron wear, local cast iron wear, and external abrasive effects on brake drums and disk brake rotors made of gray cast iron. The article concludes with a discussion on the application of cast iron for grinding balls.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006024
EISBN: 978-1-62708-172-6
Abstract
This article reviews the steps involved in presurface-preparation inspection: substrate replacement; removal of weld spatter, rounding of sharp edges, and grinding of slivers/laminations; and removal of rust scale, grease, oil, and chemical (soluble salt) contamination. It focuses on surface preparation methods that range from simple solvent cleaning to hand and power tool cleaning, dry and wet abrasive blast cleaning, centrifugal wheel blast cleaning, chemical stripping, and waterjetting for the application of the coating system. In addition, the article provides a description of the Society for Protective Coatings' (SSPC) standards and NACE International standards as well as the International Organization for Standardization (ISO) standards and International Concrete Repair Institute (ICRI) guidelines for surface cleanliness.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005729
EISBN: 978-1-62708-171-9
Abstract
Metallographic examination is a critical step in the assessment of thermal spray coating characteristics. This article discusses the major steps involved in metallographic examination: sectioning, mounting, grinding, polishing, optical microscopy, and image analysis. It provides a discussion on etching to reveal grain structure. The article also provides recommendations for metallographic examination of some standard coatings.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005629
EISBN: 978-1-62708-174-0
Abstract
A key differentiator between friction stir welding (FSW) and other friction welding processes is the presence of a nonconsumable tool in FSW, often referred to as a pin tool to differentiate it from other tooling associated with the process. This article discusses materials for friction stir welding (FSW) pin tools, various tool geometries that have been used, designs for specific applications, predicting and measuring tool performance, and other considerations in FSW pin tool design. The tool materials include tool steels, superalloys, refractory metals, carbides and ceramics, and superabrasives.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009073
EISBN: 978-1-62708-177-1
Abstract
Rough grinding and polishing of specimens are required to prepare fiber-reinforced composite samples for optical analysis. This article discusses the consumables, process variables, and the equipment that influence the sample preparation procedure. It describes the hand and automated grinding methods. The article summarizes the rough and final polishing steps for both hand and automated techniques. Common artifacts that may be created during grinding and polishing steps of composite samples are reviewed. These include scratches, fiber pull-out, matrix smears, streaks, erosion of different phases, and fiber and sample edge rounding and relief.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003767
EISBN: 978-1-62708-177-1
Abstract
This article describes metallographic preparation and examination techniques for stainless steels and maraging steels. It presents a series of micrographs demonstrating microstructural features of these alloys. Procedures used to prepare stainless steels for macroscopic and microscopic examination are similar to those used for carbon, alloy, and tool steels. Cutting and grinding must be carefully executed to minimize deformation because the austenitic grades work harden readily. The high-hardness martensitic grades that contain substantial undissolved chromium carbide are difficult to polish while fully retaining the carbides. Unlike carbon, alloy, and tool steels, etching techniques are more difficult due to the high corrosion resistance of stainless steels and the various second phases that may be encountered. The microstructures of stainless steels can be quite complex. Matrix structures vary according to the type of steel, such as ferritic, austenitic, martensitic, precipitation hardenable, or duplex.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003629
EISBN: 978-1-62708-182-5
Abstract
This article describes the methods of wear measurements and a model of corrosive wear in mill atmospheres. It explains the polarization curves of pyrrhotite and high-carbon low-alloy steel in a quartzite slurry with examples. The surfaces of pyrrhotite in contact with mild steel or stainless steel affected by galvanic interaction are discussed. The article contains a table that lists the results of laboratory marked ball wear tests for three types of steel balls in wet grinding of magnetic taconite. It also provides information on the mechanism of electrochemical interaction and relative significance of corrosion and abrasion in wear. Galvanic interactions in multielectrode systems are reviewed. The article presents a case history on the material selection for grinding balls to minimize corrosion loss and the adverse effect on flotation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
Abstract
In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations, standard marking systems, abrasives, and bonding types. It compares bonded wheel grinding with abrasive belt grinding. The article reviews the types of grinding fluids and discusses their importance in grinding operations. It describes the specific grinding processes and provides recommendations for grinding and grinding wheels.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001234
EISBN: 978-1-62708-170-2
Abstract
Mass finishing normally involves loading components to be finished into a container together with abrasive media, water, and compound. This article focuses on basic mass finishing processes, including barrel finishing, vibratory finishing, centrifugal disc and barrel finishing, spindle finishing, and drag finishing. It describes the various factors considered in selecting the most suitable mass finishing process. The article also provides information on consumable materials, process considerations, safety precautions, and waste disposal of mass finishing processes.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001240
EISBN: 978-1-62708-170-2
Abstract
Grinding is an extremely complex process that requires the consideration of a number of elements in order to make a reasonably adroit initial selection of a fluid or fluids for a manufacturing plant. In addition, the disposal of grinding wastes must meet the minimum requirements as recommended by the federal Environmental Protection Agency (EPA) and Resource Conservation and Recovery Act (RCRA) regulations. This article explains the selection considerations of such fluids, as well as the applications and environmental issues related to the grinding processes.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
Abstract
Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive products and materials, abrasive finishing processes, and the mechanisms of delivering the abrasives to the grinding or machining zone. Abrasive finishing processes, such as grinding, honing, superfinishing, microgrinding, polishing, buffing, and lapping, are discussed. The article presents a brief discussion on abrasive jet machining and ultrasonic machining. It concludes with a discussion on the four categories of factors that affect the abrasive finishing or machining: machine tool, work material, wheel selection, and operational.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001228
EISBN: 978-1-62708-170-2
Abstract
Mechanical cleaning systems are used to remove contaminants of work surface by propelling abrasive materials through any of these three principal methods: airless centrifugal blast blade- or vane-type wheels; compressed air, direct-pressure dry blast nozzle systems; or compressed-air, indirect-suction (induction) wet or dry blast nozzle systems. This article focuses on the abrasive media, equipment, applications, and limitations of dry and wet blast cleaning. It discusses the health and safety precautions to be taken during mechanical cleaning.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001106
EISBN: 978-1-62708-162-7
Abstract
Synthetic diamond and cubic boron nitride are among a class of superhard materials from the boron-carbon-nitrogen-silicon family of elements. This article focuses on the two materials, the forms in which they are produced, and their respective properties. Synthetic diamond and cubic boron nitride compounds are available in the form of grit and sintered polycrystalline blanks of various size, shape, and composition. The article explains how superabrasive grains made from these materials can be used in lapping, polishing, and grinding applications, and how diamond and boron nitride blanks can be mounted to suitable substrates to form ultrahard cutting edges and tools.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001104
EISBN: 978-1-62708-162-7
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets. Almost 50% of the total production of cemented carbides is used for nonmetal cutting applications. Their properties also make them appropriate materials for structural components, including plungers, boring bars, powder compacting dies and punches, high-pressure dies and punches, and pulverizing hammers. This article discusses the manufacture, microstructure, composition, classifications, and physical and mechanical properties of cemented carbides, as well as their machining and nonmachining applications. It examines the relationship between the workpiece material, cutting tool and operational parameters, and provides suggestions to simplify the choice of cutting tool for a given machining application. It also examines new tool geometries, tailored substrates, and the application of thin, hard coatings to cemented carbides by chemical vapor deposition and physical vapor deposition. It discusses the tool wear mechanisms and the methods available for holding the carbide tool. The article is limited to tungsten carbide cobalt-base materials.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002156
EISBN: 978-1-62708-188-7
Abstract
Abrasive jet machining (AJM) is a process that removes material from a workpiece through the use of abrasive particles entrained in a high-velocity gas stream. This article discusses the operation of principal components, advantages, and disadvantages of the AJM system. It describes several factors that determine the characteristics of the AJM process. These include flow rates of the jet stream, type and size of abrasive powders, and distance between the workpiece and nozzle.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002141
EISBN: 978-1-62708-188-7
Abstract
This article discusses the various elements of thread grinding processes, including thread grinding machines, tolerances, wheel selection, grinding speed, and grinding fluids. It describes truing of grinding wheels and reviews the process applications. In addition, the article describes the five basic methods employed for cylindrical thread grinding, namely, single-rib wheel traverse grinding, multirib wheel traverse grinding, multirib wheel plunge grinding, multirib wheel skip-rib, or alternate-rib, grinding, and multirib wheel three-rib grinding. It also provides an overview of centerless grinding of threads and high-volume applications of thread grinding.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002157
EISBN: 978-1-62708-188-7
Abstract
Abrasive flow machining (AFM) finishes surfaces and edges by extruding viscous abrasive media through or across the workpiece. This article commences with a schematic illustration of the AFM process that uses two opposed cylinders to extrude semisolid abrasive media back and forth through the passages formed by the workpiece and tooling. It discusses the major elements of an AFM system, such as machine, tooling, and abrasive media. The article provides information on polishing, radiusing, edge finishing, and surface finishing capabilities of the AFM. It concludes with information on the various applications of the AFM process.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002166
EISBN: 978-1-62708-188-7
Abstract
Electrical discharge grinding (EDG) is much like electrical discharge machining except that the electrode (tool) is a rotating graphite wheel. This article commences with a schematic illustration of a setup for EDG wheels and discusses the control operation of the EDG setup. It tabulates typical applications and conditions for the EDG of stainless steels using 300 mm diameter wheels. The article describes the process characteristics of the EDG in terms of applications, surface finish, corner radius, and wheel wear. It concludes with a graphical illustration of the effect of heat in electrical discharge grinding on the surface hardness of various work metals.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002161
EISBN: 978-1-62708-188-7
Abstract
This article describes the various characteristics of electrochemical grinding (ECG). It discusses grinding methods that can be performed with ECG components, namely, the electrolyte delivery and circulating system, the electrolyte, the DC power supply, grinding wheel, and the workpiece. Grinding, surface grinding, internal grinding, form grinding, and cylindrical grinding are discussed. The article also lists the advantages, disadvantages, and applications of ECG.
1