Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Coolants
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006363
EISBN: 978-1-62708-192-4
Abstract
Machining tribology poses a significant challenge due to the multiple parameters that must be simultaneously considered to arrive at a cost-minimized solution in production. This article provides information required to make informed decisions about machining parameters. It describes the relationships between machining parameters, workpiece material properties, cutting forces, and the corresponding temperature field in the chip. The article provides information on tool life, with an empirical model, common wear features, and the relationship between tool life and machining cost. The cutting fluids and their effect on tool life are also discussed. The article discusses machining process dynamics and corresponding vibrations. It contains a table that provides a summary of high-pressure coolant research.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004148
EISBN: 978-1-62708-184-9
Abstract
The components used in light water reactors (LWR) often remain in contact with the primary coolant, whose typical temperatures and pressures are highly aggressive, therefore, initiating corrosion in most of the alloys. This article describes the corrosion behavior of zirconium alloys in water and heat flow conditions that causes irradiation on the zirconium alloy assemblies. It discusses the effect of irradiation on the microstructure and morphology of cladded linings. The article describes the impact of metallurgical parameters on the oxidation resistance of zirconium alloys. It concludes with a discussion on LWR coolant chemistry and corrosion of fuel rods in reactors.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003610
EISBN: 978-1-62708-182-5
Abstract
This article provides information on the liquid lithium systems that are exposed to liquid metal. It discusses the forms in which liquid-metal corrosion is manifested. The influence of several key factors on the corrosion of metals and alloys by liquid-metal systems or liquid-vapor metal coolants is described. Some information on safety precautions for handling liquid metals, operating circulating systems, dealing with fire and spillage, and cleaning contaminated components, are also provided.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002150
EISBN: 978-1-62708-188-7
Abstract
This article discusses the principles of grinding process. It illustrates a typical wheel-work characteristic chart relating surface finish, wheel wear rate, metal removal rate, and power to the normal force. The article also reviews the effect of variations in work material, wheel specification, wheel speed, coolant, and grinding wheel-work conformity on the slopes of the wheel-work characteristic chart.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002151
EISBN: 978-1-62708-188-7
Abstract
Metal is removed from the workpiece by the mechanical action of irregularly shaped abrasive grains in all grinding operations. This article discusses three primary components of grinding wheels, namely, abrasive (the cutting tool), bond (the tool holder), and porosity or air for chip clearance and/or the introduction of coolant. It describes the compositions and applications of coated abrasives and types of grinding fluids, such as petroleum-base and mineral-base cutting oils, water-soluble oils, synthetic fluids, semisynthetic fluids, and water plus additives. The article concludes with information on different types of grinding processes, namely, rough grinding, precision grinding, surface grinding, cylindrical grinding, centerless grinding, internal grinding, and tool grinding.