Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Reactor vessels
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004145
EISBN: 978-1-62708-184-9
Abstract
This article focuses on the environmentally assisted cracking (EAC) of structural materials in boiling water reactors (BWRs), reactor pressure vessels, core internals, and ancillary piping. It discusses the effects of water chemistry on materials degradation, mitigation approaches, and their impact on aging management programs. The article reviews the effects of materials, environment, and stress factors on the cracking susceptibility of ferritic and austenitic structural alloys in BWRs. It describes the methods, such as data-based life-prediction approaches and mechanisms-informed life-prediction approaches, for predicting cracking kinetics in BWRs. The article provides information on several EAC mitigation techniques for BWR components, namely material solutions, stress solutions, and environmental solutions.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004219
EISBN: 978-1-62708-184-9
Abstract
This article describes the corrosion of principal parts of mining equipment such as mine shafts, wire rope, rock bolts, and pump and piping systems. It discusses the diagnosis and prevention of various types of corrosion including uniform corrosion, pitting corrosion, crevice corrosion, erosion-corrosion, and intergranular corrosion. The article explains the corrosion in tanks, reactor vessels, cyclic loading machinery, and pressure leaching equipment.