Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-13 of 13
Nuclear power systems and materials
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006400
EISBN: 978-1-62708-192-4
Abstract
This article introduces the concept of condition monitoring (CM) and summarizes various techniques used for CM across the industrial sectors. The techniques include visual inspection, performance monitoring, vibration condition monitoring, vibration condition monitoring, lubricant oil analysis, acoustic emission testing, temperature monitoring, motor current signature analysis, and ultrasound emission. The article describes the evolution of condition-based maintenance in CM. It also describes the basics of integrated vehicle health management, a capability that enables a number of maintenance philosophies. The article concludes with a discussion on various condition monitoring in industrial sectors, including condition-monitoring techniques in nuclear power plants, road condition monitoring, and condition monitoring in wind turbines.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006035
EISBN: 978-1-62708-172-6
Abstract
Surface coatings are essential in all facilities that process nuclear materials or use nuclear fission for power generation. This article describes the coatings used in two basic types of Generation 3 nuclear reactor designs in the United States and their containment size. These reactors are the boiling water reactor (BWR) and pressurized water reactor (PWR). The article provides information on the loss-of-coolant accident (LOCA) identified as the design basis accident (DBA), which can rapidly de-water the core of an operating nuclear reactor. To avoid LOCA, both the BWR and the PWR include emergency core cooling systems. The article describes a DBA test and other coating performance parameters necessary for safety-related coating systems. It provides a detailed account of the selection criteria of coating types in a nuclear plant. The article concludes by highlighting protective coating strategies in Generation 3 Plants.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005711
EISBN: 978-1-62708-171-9
Abstract
Nuclear power plants benefit from thermal spray coatings for corrosion and erosion minimization and dimensional restoration of worn parts. This article provides a detailed discussion on the advantages of thermal spray coatings, fission reactor component coatings, and coatings for nuclear fuel processing before and after irradiation for power plant applications. Nuclear fusion research is divided into two primary fields of study categorized by the method for confining the fusion fuel: magnetic confinement fusion and inertial confinement fusion.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004223
EISBN: 978-1-62708-184-9
Abstract
This article reviews a series of serious corrosion problems that have plagued the light water reactor (LWR) industry. It discusses the complex corrosion mechanisms involved, and the development of practical engineering solutions for their mitigation. The article contains tables that present the corrosion history of LWRs, and the ten most expensive operation and maintenance costs of corrosion for a particular reactor site.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004102
EISBN: 978-1-62708-184-9
Abstract
This article describes the corrosion mechanisms, challenges, and control methods in service water distribution systems. It provides a discussion on typical designs and water qualities for distribution systems used in fossil-fueled and nuclear power plants. The article also explains the techniques for controlling corrosion in service water systems.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004145
EISBN: 978-1-62708-184-9
Abstract
This article focuses on the environmentally assisted cracking (EAC) of structural materials in boiling water reactors (BWRs), reactor pressure vessels, core internals, and ancillary piping. It discusses the effects of water chemistry on materials degradation, mitigation approaches, and their impact on aging management programs. The article reviews the effects of materials, environment, and stress factors on the cracking susceptibility of ferritic and austenitic structural alloys in BWRs. It describes the methods, such as data-based life-prediction approaches and mechanisms-informed life-prediction approaches, for predicting cracking kinetics in BWRs. The article provides information on several EAC mitigation techniques for BWR components, namely material solutions, stress solutions, and environmental solutions.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004146
EISBN: 978-1-62708-184-9
Abstract
This article discusses the main materials and water chemistry characteristics of the primary and secondary water circuits of a pressurized water reactor (PWR). It reviews the corrosion issues of PWR materials and the influence of corrosion and fouling on primary and secondary circuit radiation fields. The article explains the primary side intergranular stress corrosion cracking (IGSCC) in different materials, namely, nickel-base alloys, high-strength nickel-base alloys, low-strength austenitic stainless steels, and high-strength stainless steels. The secondary side corrosion in steam generator including denting, pitting, intergranular attack and IGSCC is also discussed. The article examines laboratory studies that have resulted in models and computer codes for evaluating and predicting intergranular corrosion, and considers the remedial actions for preventing or arresting intergranular corrosion. It concludes with information on the external bolting corrosion in nuclear power reactors.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
Abstract
This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004148
EISBN: 978-1-62708-184-9
Abstract
The components used in light water reactors (LWR) often remain in contact with the primary coolant, whose typical temperatures and pressures are highly aggressive, therefore, initiating corrosion in most of the alloys. This article describes the corrosion behavior of zirconium alloys in water and heat flow conditions that causes irradiation on the zirconium alloy assemblies. It discusses the effect of irradiation on the microstructure and morphology of cladded linings. The article describes the impact of metallurgical parameters on the oxidation resistance of zirconium alloys. It concludes with a discussion on LWR coolant chemistry and corrosion of fuel rods in reactors.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003782
EISBN: 978-1-62708-177-1
Abstract
Zirconium, hafnium, and their alloys are reactive metals used in a variety of nuclear and chemical processing applications. This article describes various specimen preparation procedures for these materials, including sectioning, mounting, grinding, polishing, and etching. It reviews some examples of the microstructure and examination for zircaloy alloys, hafnium, zirconium, and bimetallic forms.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002471
EISBN: 978-1-62708-194-8
Abstract
This article discusses the principles of corrosion and the basis of the various prevention measures that can be taken for different corrosion modes. It describes aqueous corrosion phenomena in terms of the electrochemical reactions that occur at the metal-environment interface. The article explains the specific forms of corrosion, including general corrosion, localized attack, and environmentally assisted cracking. It provides a discussion on the engineering aspects of design that can, without due care and attention, precipitate unexpected premature failure. The article reviews ways to improve corrosion awareness and prevent corrosion/degradation. It describes a life prediction method with an example of environmental degradation in light-water nuclear reactors. The article concludes with a discussion on the validation of life-prediction algorithms and their applications.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001374
EISBN: 978-1-62708-173-3
Abstract
This article describes the high-temperature solid-state welding process used to join members of similar or dissimilar materials by three stages, namely, primary bonding, bond-surface extension, and elimination of the original joining surface. It lists the various advantages and disadvantages of the high-temperature solid-state welding process. The article discusses important process parameters for high-temperature solid-state welding, such as temperature, pressure, welding time, and welding atmosphere. It concludes with information on the application of the process in the fields of aerospace and nuclear engineering.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
Abstract
This article describes the factors considered in the analysis of brazeability and solderability of engineering materials. These are the wetting and spreading behavior, joint mechanical properties, corrosion resistance, metallurgical considerations, and residual stress levels. It discusses the application of brazed and soldered joints in sophisticated mechanical assemblies, such as aerospace equipment, chemical reactors, electronic packaging, nuclear applications, and heat exchangers. The article also provides a detailed discussion on the joining process characteristics of different types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys; refractory metals; cobalt-base alloys; and ceramic materials.