Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8
Crankshafts
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006427
EISBN: 978-1-62708-192-4
Abstract
This article focuses on friction, lubrication, and wear of internal combustion engine parts, improvements in which provide important gains in energy efficiency, performance, and longevity of the internal combustion (IC) engine systems. It discusses the types, component materials, and Friction and Wear Control of IC engine. The article explains the process of friction reduction by surface textures or coatings. It provides information on surface hardening of iron and steel, which is commonly employed for engine and powertrain components such as crankshafts, cams, and cylinder liners. The article also discusses advanced surface engineering technologies, such as diamondlike carbon coatings and surface texture technology. Information on thermal-spray methods that have led to improvements in engine components is also provided. The article describes IC engine-components wear, namely, piston assembly wear, valvetrain wear, cylinder-bore wear, and engine bearing wear. It concludes with information on inlet valve and seat wear of IC engine.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005994
EISBN: 978-1-62708-168-9
Abstract
This article provides general information on the definition, purposes, and quench equipment for direct-forge quenching (DFQ) and direct heat treatment (DHT) processes that are widely used in automotive and various other mechanical industries. It discusses the technological advances in these processes and their ability to produce high-quality components at low production cost from microalloyed steels. Further, the article describes the influence of carbon contents on toughness of microalloyed direct heat treated steels. It focuses on the DFQ and DHT steel technologies applied in continuous rolling mills to produce various DHT steels for machining and cold forming applications.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005842
EISBN: 978-1-62708-167-2
Abstract
This article focuses on the frequently encountered causes of induction coil failures and typical failure modes in fabrication of hardening inductors, tooth-by-tooth gear-hardening inductors, clamshell inductors, contactless inductors, split-return inductors, butterfly inductors, and inductors for heating internal surfaces. It discusses the current density distribution and the skin effect, the proximity effect, and crack-propagation specifics. The article also describes selected properties of copper alloys, the electromagnetic edge effect of coil copper turn, and the effect of magnetic flux concentrators on coil life. It also reviews the importance of having appropriate and reliable electrical contacts.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005865
EISBN: 978-1-62708-167-2
Abstract
Induction heat treatment is a common method for hardening and tempering of crankshafts, which are necessary components in almost every internal combustion engine for cars, trucks, and machinery, as well as pumps, compressors, and other devices. Similar to crankshafts, camshafts also belong to the same group of the critical engine/powertrain components. This article focuses on induction technologies used for surface hardening and tempering of automotive crankshafts, and provides general information on U-shaped inductors with crankshaft rotation and clamshell or split inductors without crankshaft rotation and their pros and cons. It also describes the effect of post-heat-treatment processes in crankshafts. The article concludes with a discussion on induction hardening of camshafts that focuses on those used in automobiles and truck engines.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001366
EISBN: 978-1-62708-173-3
Abstract
Flash welding (FW) is a resistance welding process in which a butt joint weld is produced by a flashing action and by the application of pressure. Flash welding is used to join metallic parts that have similar cross sections in terms of size and shape. This article discusses flash-welding applications, including chain links, transmission bands, automotive flywheel ring gears, aircraft landing gear, band-saw blades, and crankshaft counter weights. It describes the components of a typical flash-welding machine. The article provides information on the electrical controls of flash-welding equipment. These include programmable controllers, welding current controllers, and either motor or servo-valve controllers.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002154
EISBN: 978-1-62708-188-7
Abstract
Lapping is the lower-pressure, lower-speed, and lower-power application of the use of fixed abrasives. This article begins with a discussion on the process capabilities of lapping and reviews the selection of abrasive and vehicle for lapping. It describes the methods of lapping outer cylindrical surfaces, namely, ring lapping, machine lapping between plates, centerless roll lapping with loose abrasives, and centerless lapping with bonded abrasives. In addition, the article discusses the methods employed for lapping of outer surfaces of piston rings, crankshafts, inner cylindrical surfaces, flat surfaces, end surfaces, spherical surfaces, balls, spring like parts, and gears. It also reviews the problems in flat and end lapping. The article concludes information on the use of lapping in accelerated wearing-in process for matching and aligning components of bearing assemblies.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000606
EISBN: 978-1-62708-181-8
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of medium-carbon steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the torsional-fatigue fracture, cup and cone tensile fracture, brittle fracture, and in-service rotary bending fatigue fracture of fractured roof-truss angles, pressure-vessel shells, automotive axle shafts, broken keyed spindles, crane gears, blooming-mill spindles, automotive bolts, and crane wheels of these steels.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000608
EISBN: 978-1-62708-181-8
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of AISI/SAE alloy steels (4xxx steels) and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the brittle fracture, ductile fracture, impact fracture, fatigue fracture surface, reversed torsional fatigue fracture, transgranular cleavage fracture, rotating bending fatigue, tension-overload fracture, torsion-overload fracture, slip band crack, crack growth and crack initiation, crack nucleation, microstructure, hydrogen embrittlement, sulfide stress-corrosion failure, stress-corrosion cracking, and hitch post shaft failure of these steels. The components considered in the article include tail-rotor drive-pinion shafts, pinion gears, outboard-motor crankshafts, bull gears, diesel engine bearing cap bolts, splined shafts, aircraft horizontal tail-actuator shafts, bucket elevators, aircraft propellers, helicopter bolts, air flasks, tie rod ball studs, and spiral gears.