Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Internal combustion engines
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006405
EISBN: 978-1-62708-192-4
Abstract
This article focuses on lubricants classified as either internal combustion engine or nonengine lubricants, and the lubricant additives. The functional groups of chemically active and inert additives, as well as friction modifiers and other additives, are described in detail. The chemically active additives include dispersants, detergents, antiwear, and extreme-pressure agents, oxidation inhibitors, and rust and corrosion inhibitors. The chemically inert additives include emulsifiers, demulsifiers, pour-point depressants, foam inhibitors, and viscosity improvers. The article also discusses the multifunctional nature of additives and concludes with information on lubricant formulation.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006427
EISBN: 978-1-62708-192-4
Abstract
This article focuses on friction, lubrication, and wear of internal combustion engine parts, improvements in which provide important gains in energy efficiency, performance, and longevity of the internal combustion (IC) engine systems. It discusses the types, component materials, and Friction and Wear Control of IC engine. The article explains the process of friction reduction by surface textures or coatings. It provides information on surface hardening of iron and steel, which is commonly employed for engine and powertrain components such as crankshafts, cams, and cylinder liners. The article also discusses advanced surface engineering technologies, such as diamondlike carbon coatings and surface texture technology. Information on thermal-spray methods that have led to improvements in engine components is also provided. The article describes IC engine-components wear, namely, piston assembly wear, valvetrain wear, cylinder-bore wear, and engine bearing wear. It concludes with information on inlet valve and seat wear of IC engine.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006399
EISBN: 978-1-62708-192-4
Abstract
Tribology is the study of friction, lubrication, and wear. It is a multidisciplinary subject covering the mechanics of contacting surfaces, their roughness characteristics, lubrication, and material behavior under normal load as well as in traction. This article focuses on well-established and widely accepted analytical methods and design and analysis charts for dealing with some of the issues in the area of engine and power train tribology. It provides a discussion on lubricant rheology and the prediction of lubricating film thickness. The article reviews the frictional power loss in piston-cylinder conjunctions, engine bearings, and transmission and differential gearing systems.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005740
EISBN: 978-1-62708-171-9
Abstract
This article describes the benefits that can be achieved by using thermal spray on particular engine parts of an automobile. These include improvement in fuel consumption, wear resistance and bonding, and reduction of oil consumption, exhaust heat loss, and cooling heat loss. Typical engine parts are cylinder blocks, cylinder bores, cast iron cylinder liners, piston rings, connecting rod bearings, turbochargers, engine valve lifters, exhaust system parts, and oxygen sensors. The article also describes the benefits of using thermal spray on transmission parts such as synchronizer rings and torque converters.