Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 67
Superconductors
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003155
EISBN: 978-1-62708-199-3
Abstract
Superconductors are materials that exhibit a complete disappearance of electrical resistivity on lowering the temperature below the critical temperature. A superconducting material must exhibit perfect diamagnetism, that is, the complete exclusion of an applied magnetic field from the bulk of the superconductor. Superconducting materials that have received the most attention are niobium-titanium superconductors (the most widely used superconductor), A15 compounds (in which class the important ordered intermetallic Nb3Sn lies), ternary molybdenum chalcogenides (Chevrel phases), and high-temperature ceramic superconductors. This article provides an overview of basic principles of superconductors and the different classes of superconducting materials and their general characteristics.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001294
EISBN: 978-1-62708-170-2
Abstract
This article presents a general description of pulsed-laser deposition. It describes the components of pulsed-laser deposition equipment. The article also discusses the effects of angular distribution of materials. Finally, the article reviews the characteristics of high-temperature superconductors and ferroelectric materials.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001057
EISBN: 978-1-62708-162-7
Abstract
Aluminum, the second most plentiful metallic element, is an economic competitor in various applications owing to its appearance, light weight, fabricability, physical properties, mechanical properties, and corrosion resistance. This article discusses the primary and secondary production of aluminum and classification system for cast and wrought aluminum alloys. It talks about various manufactured forms of aluminum and its alloys, which are classified into standardized products such as sheet, plate, foil, rod, bar, wire, tube, pipe, and structural forms, and engineered products such as extruded shapes, forgings, impacts, castings, stampings, powder metallurgy parts, machined parts, and metal-matrix composites. The article also reviews important fabrication characteristics in the machining, forming, forging, and joining of aluminum alloys. It concludes with a description of the major industrial applications of aluminum, including building and construction, transportation, consumer durables, electrical, machinery and equipment, containers and packaging, and other applications.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001099
EISBN: 978-1-62708-162-7
Abstract
Low-expansion alloys are characterized by their dimensional stability, suiting them for applications such as geodetic tape, bimetal strip, glass-to-metal seals, and electronic components. This article describes the composition of such alloys along with related properties and behaviors. It explains how humidity and other factors, such as heat treating and cold drawing, influence thermal expansion rates. It also provides machining information on some of the more common low-expansion alloys, and reviews special alloy types including iron-cobalt-chromium alloys, hardenable alloys, and high-strength controlled-expansion alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001058
EISBN: 978-1-62708-162-7
Abstract
A four-digit numerical designation system is used to identify wrought aluminum and aluminum alloys. In addition to providing a detailed account of the temper designation system for aluminum and aluminum alloys, this article describes wrought and cast aluminum and aluminum alloy designations. It also tabulates the grade designations and compositions of wrought and cast aluminum and aluminum alloys. The article provides information on cross-referencing of aluminum wrought and ingot/cast products according to composition, per the Aluminum Association, Unified Numbering System (UNS) and International Organization for Standardization (ISO) standards.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001063
EISBN: 978-1-62708-162-7
Abstract
Aluminum-lithium alloys have been developed primarily to reduce the weight of aircraft and aerospace structures. This article commences with a discussion on the physical metallurgy and development of aluminum-lithium alloys. It focuses on major commercial aluminum-lithium alloys, including alloy 2090, alloy 2091, alloy 8090, alloy CP276, and Weldalite 049. The article also lists the chemical compositions, physical properties, fabrication characteristics, corrosion performance, and general applications of these alloys. A comparison of alloy properties is represented graphically.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001105
EISBN: 978-1-62708-162-7
Abstract
Ceramic-metal composites, or cermets, combine the heat and wear resistance of ceramics with the formability of metals, filling an application niche that includes cutting tools, brake pads, heat shields, and turbine components. This article examines a wide range of cermets, including oxide cermets, carbide and carbonitride cermets, boride cermets, and other refractory types. It describes the powder metallurgy process by which cermets are produced, examining each step from powder preparation to post treatment. It discusses forming and compacting, injection molding, extrusion, rolling, pressing, slip casting, and sintering. It also discusses fundamental concepts such as chemical bonding, chemical composition, microstructure, and the development of physical and mechanical properties.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001081
EISBN: 978-1-62708-162-7
Abstract
This article discusses the wrought product forms of titanium and titanium-base alloys, which include forgings and the typical mill products with tabulations for various specifications, and compares specifications for pure titanium, titanium alloys for mechanical, physical properties and chemical properties, including chemical composition, corrosion resistance, and chemical reactivity. The article discusses the effects of alloying elements in titanium alloys, and describes the classes of titanium alloys, namely, alpha alloys, alpha-beta alloys, and beta alloys. It also describes the typical applications of various titanium-base materials, and explains the crystal structure, effect of impurities, and microstructural constituents of titanium alloys. The article provides a brief description on the processing of wrought titanium alloys, including primary fabrication in which ingots are converted into general mill products and secondary fabrication (forging, extrusion, forming, machining, chemical milling and joining) of finished shapes from mill products and the heat treatment of titanium alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001100
EISBN: 978-1-62708-162-7
Abstract
This article discusses the history of shape memory alloys (SMAs) along with their properties, capabilities, and crystallography, including phase transformations that occur during thermal treatment. It describes the thermomechanical behaviors of SMAs and explains how to characterize them using differential scanning calorimeter (DSC) techniques as well as other methods. The article examines the most common shape memory alloys, namely, nickel-titanium and copper-base SMAs, and provides information on their respective properties.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001106
EISBN: 978-1-62708-162-7
Abstract
Synthetic diamond and cubic boron nitride are among a class of superhard materials from the boron-carbon-nitrogen-silicon family of elements. This article focuses on the two materials, the forms in which they are produced, and their respective properties. Synthetic diamond and cubic boron nitride compounds are available in the form of grit and sintered polycrystalline blanks of various size, shape, and composition. The article explains how superabrasive grains made from these materials can be used in lapping, polishing, and grinding applications, and how diamond and boron nitride blanks can be mounted to suitable substrates to form ultrahard cutting edges and tools.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001101
EISBN: 978-1-62708-162-7
Abstract
Metal-matrix composites (MMCs) are a class of materials with potential for a wide variety of structural and thermal management applications. They are nonflammable, do not outgas in a vacuum, and suffer minimal attack by organic fluids, such as fuels and solvents. This article presents an overview of the status of MMCs, and provides information on physical and mechanical properties, processing methods, distinctive features, and various types of continuously and discontinuously reinforced aluminum, magnesium, titanium, copper, superalloy, and intermetallic-matrix composites. It further discusses the property prediction and processing methods for MMCs.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001082
EISBN: 978-1-62708-162-7
Abstract
The combination of high strength-to-weight ratio, excellent mechanical properties, and corrosion resistance makes titanium the best material choice for many critical applications. This article commences with a description of the historical perspective of titanium casting technology. It discusses the various types of molding methods, namely, rammed graphite molding, and lost-wax investment molding. The article provides information on the casting design, melting, and pouring practices, and describes the microstructure, hot isostatic pressing, heat treatment, and mechanical properties of Ti-6AI-4V alloy. It also talks about the chemical milling and weld repair, and describes the product applications of titanium alloy castings. Tensile properties, standard industry specifications, and chemical compositions of various titanium alloy castings are tabulated.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001107
EISBN: 978-1-62708-162-7
Abstract
This article discusses the properties and uses of structural ceramics and the basic processing steps by which they are made. It describes raw material preparation, forming and fabrication, thermal processing, and finishing. It provides information on the composition, microstructure, and properties of aluminum oxides, aluminum titanate, silicon carbide, boron carbide, zirconia, silicon nitride, silicon-aluminum-oxynitride, and several ceramic composites. It also explains how these materials maintain their mechanical strength and dimensional tolerances at high temperatures and how some of their shortcomings are being addressed.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001108
EISBN: 978-1-62708-162-7
Abstract
This article reviews the history of superconductivity from its discovery in the early 1900s to the renewed interest in the mid-1980s spurred by the development of high-temperature superconducting devices. It identifies some of the materials in which superconductivity has been observed, including metals and alloys, compounds, and oxides, and discusses their properties as well as potential applications. The article also explains how various superconducting materials are produced and provides a foundation for understanding the basic operating principles.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001076
EISBN: 978-1-62708-162-7
Abstract
Tin is produced from both primary and secondary sources. This article discusses the chemical compositions, production, properties, microstructure and applications of tin and tin alloys. The major tin alloys discussed here are tin-antimony-copper alloy (pewter), bearing alloy, solder alloy and other alloys containing traces of tin. Data on tin consumption in the United States is presented graphically.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001083
EISBN: 978-1-62708-162-7
Abstract
This article focuses on the mechanical properties, production of titanium powder metallurgy (P/M) compacts, namely, blended elemental (BE) compacts and prealloyed (PA) compacts. It explains the postcompaction treatments of titanium P/M compacts, including heat treatment, and thermochemical processing. The article talks about the applications of titanium P/M products, namely, BE and PA products. It concludes with a short note on the future trends in titanium P/M technology.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001070
EISBN: 978-1-62708-162-7
Abstract
This article briefly reviews the subject of copper-base powder-metallurgy (P/M) products in terms of powder production methods (atomization, oxide reduction, electrolysis, and hydrometallurgy) and the product properties/consolidation practices of the major applications. Of the four major methods for making copper and copper alloy powders, atomization and oxide reduction are presently practiced on a large scale in North America. The article provides information on the mechanism, production, properties, composition and applications of different types of copper-base P/M products, including self-lubricating sintered bearings, structural parts, oxide-dispersion-strengthened copper, sintered metal friction materials, and porous filters.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001109
EISBN: 978-1-62708-162-7
Abstract
Superconductivity has been found in a wide range of materials, including pure metals, alloys, compounds, oxides, and organic materials. Providing information on the basic principles, this article discusses the theoretical background, types of superconductors, and critical parameters of superconductivity. It discusses the magnetic properties of selected superconductors and types of stabilization, including cryogenic stability, adiabatic stability, and dynamic stability. The article also focuses on alternating current losses in superconductors, including hysteresis loss, penetration loss, eddy current loss, and radio frequency loss. Furthermore, the article describes the flux pinning phenomenon and Josephson effects.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001084
EISBN: 978-1-62708-162-7
Abstract
Zirconium, hafnium, and titanium are produced from ore that generally is found in a heavy beach sand containing zircon, rutile, and ilmenite. This article discusses the processing methods of these metals, namely, liquid-liquid separation process, distillation separation process, refining, and melting. It also discusses the primary and secondary fabrication of zirconium and hafnium and its alloys. The article talks about the metallurgy of zirconium and its alloys with emphasis on allotropic transformation, cold work and recrystallization, anisotropy and preferred orientation, and the role of oxygen. It concludes by providing useful information on the applications of reactor and industrial grades of zirconium alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001089
EISBN: 978-1-62708-162-7
Abstract
Rare earth metals belong to Group IIIA of the periodic table that includes scandium, yttrium, and the lanthanide elements which are lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. This article classifies the rare earth metals based on their purity level, which are designated as research grades (>99.8% pure) and commercial grades (95% - 98% pure), and describes the preparation and purification, including solid-state electrolysis. It further discusses physical, mechanical, and chemical properties; electronic configurations; crystal structures, and explains the alloy forming characteristics of rare earth elements. The article concludes by describing the various applications of commercial-grade rare earth elements and commercial alloys, which incorporates rare earth elements as additives.