Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Channel inductors
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005891
EISBN: 978-1-62708-167-2
Abstract
Induction heating has the ability to concentrate the electromagnetic field and heat within a certain area of the workpiece. This article provides a detailed discussion on the end heating of bars, rods, and billets using solenoid inductors, oval inductors, and channel inductors. It reviews the importance of computer modeling in predicting the impact of different, interrelated, and nonlinear factors on the transitional and final thermal conditions of billets and bars. The article describes the most appropriate processes to improve end heating process effectiveness. Induction bending of narrow circumferential band of pipe or tube is also discussed. The article concludes with a discussion on stress relieving of pipe ends and welded areas.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005902
EISBN: 978-1-62708-167-2
Abstract
An induction channel furnace consists of a tiltable furnace vessel with refractory lining onto which an inductor or several inductors are flange mounted. This article includes a discussion on the design for holding and dosed-pouring of the iron melts, design for melting the materials, and refractory lining of furnace vessel. It provides information on the structural changes and refractory lining of channel inductors. The article also includes a discussion on power supplies deployed in channel inductor furnaces: line-frequency power supply for melting iron, and converter power supply for melting nonferrous metals. It concludes with an overview of the inductor cooling circuit.