Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Continuous fiber-reinforced ceramic matrix composites
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003400
EISBN: 978-1-62708-195-5
Abstract
One of the key attributes of continuous fiber-reinforced ceramic composites (CFCCs) is their ability to undergo inelastic straining upon mechanical loading. This article reviews the mechanics of inelastic deformation and fracture of CFCCs, as needed for the development of damage-tolerant failure prediction methodologies for use in engineering design. It outlines a general framework for the description of fracture in structural materials in the presence of notches and cracks. The article describes the common classes of fracture behavior of CFCCs and presents the constitutive laws needed to describe crack-tip inelasticity. It demonstrates the effects of inelasticity on crack-tip stress fields and addresses the environmental degradation effects on damage tolerance.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003469
EISBN: 978-1-62708-195-5
Abstract
Interpretation of failures of ceramic-matrix composites, and in particular continuous fiber reinforced ceramic-matrix composites is complicated by the complex structure of the composite material. This article describes the failure characteristics and evidence of failure mechanisms of these composites, with illustrations.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003486
EISBN: 978-1-62708-195-5
Abstract
The applications of discontinuously reinforced ceramic-matrix composites (CMCs) fall into four major categories, namely, cutting tool inserts; wear-resistant parts; aerospace and military applications; and other industrial applications, including engines and energy-related applications. This article provides examples for these four categories, with an emphasis on those applications/materials that have achieved commercial viability. The applications for continuous fiber ceramic composites are also summarized.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003449
EISBN: 978-1-62708-195-5
Abstract
This article discusses the mechanisms for enhancing the reliability of three types of ceramic-matrix composites: discontinuously reinforced ceramic-matrix composites, continuous fiber ceramic composites, and carbon-carbon composites. It also presents examples of their mechanical and physical properties. Examples that illustrate the properties of commercially available materials are also provided.