Skip Nav Destination
Close Modal
By
Kenneth B. Tator, William R. Slama
By
Mark Schultz, Timothy McDonough, Michael Eckart, Mike Bentkjaer
By
Kevin J. Kovaleski, David F. Pulley
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7
Water-borne paints
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006044
EISBN: 978-1-62708-172-6
Abstract
Acrylic coatings are one of the major generic classes of organic coatings and are prevalent in both architectural and industrial applications. This article provides information on the chemistry of acrylic polymers, the methods used in their manufacture, the relationship between structure and properties when they are formulated into coatings, and how they are being used in coatings. The main discussion points are the differences between solventborne and waterborne technologies and some of the challenges in formulating and applying waterborne acrylic coatings. The article describes the mechanism of film formation of acrylic latex polymers and its effect on final coating properties. It discusses the types of waterborne acrylic latex coatings based on chemical properties and based on applications such as primers, intermediate coats, topcoats, stains, and direct-to-substrate finishes. The article concludes with a description of the advances in the development of waterborne acrylic coatings for maintenance and protective applications.
Book Chapter
Polyester and Vinyl Ester Coatings
Available to PurchaseSeries: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006009
EISBN: 978-1-62708-172-6
Abstract
This article provides a discussion on polyester coating applications such as powder coatings, can coatings, and automotive paints. It includes an overview, structure, properties, and benefits of vinyl ester resins. The article discusses the additives for both unsaturated polyester and vinyl ester coatings, namely, curing systems, thixotropic agents and fillers. It exemplifies polyester and vinyl ester coating, lining and flooring systems that are used for top-to-bottom protection of industrial plants and equipment. The article also highlights the concerns to be addressed when using polyesters and vinyl esters.
Book Chapter
Marine Coatings
Available to PurchaseSeries: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006013
EISBN: 978-1-62708-172-6
Abstract
This article focuses on marine coatings associated with protecting commercial and military vessels. It provides detailed information on the common issues and requirements encountered when coating ballast tanks, freeboard, topside, and decks of the vessel. The article describes the advent of ultra-high solids coatings technology, and reviews the marine-specific coatings such as antifouling and their mechanisms and common failure modes.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006071
EISBN: 978-1-62708-172-6
Abstract
An alkyd is an ester-based polymer derived from the polycondensation reaction of polyhydric alcohol and polybasic acid. This article provides useful information on the chemistry, production, coating formulations, modification, commercial products, and application methods of alkyd resins. It also provides a section on drying oil, which is used in the manufacture of resins. The article describes the three categories of metals that have been used in drier compounds: primary driers (active or oxidation driers), secondary driers (through-driers), and auxiliary driers. It also provides information on the oil length of an alkyd resin and on solvents, which play a critical role in the formulation and use of the coating. The article concludes with a description of the concerns that a user, specifier, or applicator should be aware of when using alkyd coatings.
Book Chapter
Finishing Systems for Naval Aircraft
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004125
EISBN: 978-1-62708-184-9
Abstract
This article describes the protective coatings technology used in naval aircrafts. It reviews the future needs and trends of the protective coatings technology based on advancing technology, environmental concerns, and operational requirements. The article discusses the standard finishing systems for aircrafts: the surface pretreatment system, primer, topcoat, advanced-performance topcoat, self-priming topcoat, and specialty coatings. It presents safe compliant solutions to environmental problems associated with the protective coatings technology. These solutions include the use of environmental regulations and hazardous materials, nonchromated pretreatments, waterborne technology, high-solids technology, and touch-up paints. The article also deals with the use of electrodeposition coatings, powder coatings, adhesive films, paint application equipment, and non-chromated sealants in the protective coatings technology.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003692
EISBN: 978-1-62708-182-5
Abstract
This article discusses the coating systems categorized by the generic type of binder or resin and grouped according to the curing or hardening mechanism inherent within that generic type. It focuses on the properties, advantages, and limitations of various autooxidative cross-linked resins, thermoplastic resins, and cross-linked thermosetting resins. The autooxidative cross-linked resins include alkyd resins and epoxy esters. The article examines the two types of coatings based on thermoplastic resins: those deposited by evaporation of a solvent, commonly called lacquers, and those deposited by evaporation of water, a class of coatings called water-borne coatings. The coatings that chemically cross link by copolymerization, including epoxies, unsaturated polyesters, urethanes, high-temperature curing silicones, and phenolic linings, are also described.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001325
EISBN: 978-1-62708-170-2
Abstract
This article discusses coating products available for use in the aerospace industry that are compliant with regulations requiring reductions in emissions from organic solvents. The coating products addressed include primers, topcoats, and chemical milling maskants. It describes their characteristics and limitations compared to conventional noncompliant materials. The article addresses the methods and products commonly used achieve regulatory compliance: waterborne coatings, exempt-solvent-based coatings, high-solids coatings, powder coating, and electro-deposition.