Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-19 of 19
Zinc plating
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006049
EISBN: 978-1-62708-172-6
Abstract
The use of zinc in corrosion-protective coatings is due to its higher galvanic activity relative to that of steel. Pure zinc dust provides the best sacrificial protection to steel in a galvanic couple. Zinc-rich coatings can be subcategorized according to the type of binder material used, namely, inorganic and organic zinc-rich coatings. Common inorganic binders such as post-cured water-based alkali metal silicates, self-cured water-based alkali metal silicates, and self-cured solvent-based alkyl silicates, are reviewed. The article also compares inorganic and organic zinc-rich coatings, and discusses the concerns regarding zinc-rich coatings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006014
EISBN: 978-1-62708-172-6
Abstract
This article reviews the various substrates for coatings, namely, steel, cast iron, galvanized steel, aluminum, stainless steel, nonferrous metals, concrete, and wood. General guidance for surface preparation and coating selection is provided along with unique requirements for the particular substrate(s).
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004107
EISBN: 978-1-62708-184-9
Abstract
A sacrificial coating applied to a steel substrate can add 20 years or more of life to the substrate, depending on its thickness and composition. Different techniques to apply sacrificial coatings offer various characteristics that contribute to corrosion resistance. This article discusses thermal spray, hotdipping, and electroplating processes used to apply coatings in steel structures. It describes the corrosion attributes of the resulting coatings and discusses the methods of protecting steel from corrosion using aluminum and zinc coatings.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005164
EISBN: 978-1-62708-186-3
Abstract
This article provides an overview of some common sheet steel coatings available. It discusses the formability differences between coated and bare steel and provides some general guidelines on the forming of coated steels. Coated steels are classified according to the nature of the substrate, the type of coating, and the method used for its application. The article describes various coating types for steels such as zinc-coated steels, aluminum-coated steels, tin-coated steels, terne-coated steels, and organic-coated steels.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
Abstract
From the standpoint of corrosion protection of iron and steel, metallic coatings can be classified into two types: noble coatings and sacrificial coatings. This article focuses on hotdipped zinc, aluminum, zinc-aluminum alloy and aluminum-zinc alloy coatings. It discusses the Sendzimir process and the Cook-Norteman process, which are the two commercial processes that are used for almost all hot-dip galvanized sheet steel in the United States. The article provides a discussion on the aqueous corrosion and atmospheric corrosion of galvanized steel and aluminized steel, as well as the intergranular corrosion of galvanized steel.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003693
EISBN: 978-1-62708-182-5
Abstract
This article describes the characteristics of zinc-rich coatings that can be subcategorized according to the type of binder material used. It discusses the formulations of zinc-rich coatings with organic binders. The three major groups of inorganic zinc-rich coatings categorized by the Society for Protective Coatings are also discussed. These include postcured water-based alkali metal silicates, self-cured water-based alkali metal silicates, and self-cured solvent-based alkyl silicates. The article concludes with information on comparisons of inorganic with organic zinc-rich coatings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003688
EISBN: 978-1-62708-182-5
Abstract
This article describes the basic principles, processing steps, and benefits of continuous hot dip coatings. It provides useful information on the principal types of coatings applied in the hot-dip process. The types of coatings include galvanized coatings, galvannealed coatings, 55Al-Zn coating, 95Zn-Al coating, and aluminized coatings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003689
EISBN: 978-1-62708-182-5
Abstract
This article provides a discussion on the two basic steps of the batch hot dip galvanizing process: surface preparation and galvanizing. It describes the factors affecting coating thickness and coating structure. The mechanical properties of the coating and steel substrate are also discussed. The article also provides information on the various factors that should be considered before galvanizing a material. It examines the performances of galvanized coatings in corrosion service. The joining of galvanized structural members by bolting and welding is also discussed. The article describes the synergistic effects of galvanized and painted systems. It explains the applications of hot dip galvanized steel. The article concludes with information on pertinent galvanizing specifications under the authority of the American Society for Testing and Materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
Abstract
Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also discusses selective plating, electroforming, and other processes and where they are typically used.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
Abstract
This article provides information on the properties, compositions, designations, and applications of zinc and zinc alloys. It discusses the principal areas of application of zinc: in coatings and anodes for corrosion protection of irons and steels; in zinc casting alloys; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed as well as the three main types of wrought products: flat-rolled products, wire-drawn products, and extruded and forged products. The article also provides a section on the corrosion resistance of zinc and zinc coatings in various atmospheres.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001257
EISBN: 978-1-62708-170-2
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001272
EISBN: 978-1-62708-170-2
Abstract
This article commences with a description of the applications of galvanized coatings and provides information on metallurgical characteristics, such as coating thickness and alloying elements. It examines the effect of galvanizing process on the mechanical properties of steels and briefly describes the cleaning procedures of iron and steel pieces, before galvanizing. The article discusses the different types of conventional batch galvanizing practices. Information on the galvanizing of silicon-killed steels is also presented. The article concludes with helpful information on batch galvanizing equipment and galvanizing post treatments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001270
EISBN: 978-1-62708-170-2
Abstract
This article discusses the processes involved in continuous hotdip coating of steel sheets, namely, hot and cold line processing, surface preparation, and post treatment. It outlines the properties and microstructures of metals and their alloys used in this process. The coatings considered in this article include metal coatings, such as zinc coatings, and alloy coatings, such as zinc-iron, types 1 and 2 aluminum, Zn-5AI, Zn-55AI, and lead-tin coatings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001248
EISBN: 978-1-62708-170-2
Abstract
Commercial zinc plating is accomplished by a number of distinctively different systems: cyanide baths, alkaline noncyanide baths, and acid chloride baths. This article focuses on the composition, advantages, disadvantages, operating parameters, and applications of each of the baths. It provides information on the control of thicknesses of zinc specified for service in various indoor and outdoor atmospheres and on the similarities between cadmium and zinc plating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
Abstract
This article discusses the classifications, compositions, properties, advantages, disadvantages, limitations, and applications of the most commonly used methods for surface engineering of carbon and alloy steels. These include cleaning methods, finishing methods, conversion coatings, hot-dip coating processes, electrogalvanizing, electroplating, metal cladding, organic coatings, zinc-rich coatings, porcelain enameling, thermal spraying, hardfacing, vapor-deposited coatings, surface modification, and surface hardening via heat treatment.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001363
EISBN: 978-1-62708-173-3
Abstract
Resistance spot welding (RSW) is a process in which faying surfaces are joined in one or more spots by the heat generated by resistance to the flow of electric current through workpieces that are held together under force by electrodes. This article discusses the major advantages of spot welding and the three principal elements, such as electrical circuit, control circuit, and mechanical system, of RSW machines. It reviews the three basic types of RSW machines: pedestal-type welding machines, portable welding guns, and multiple spot welding machines. The article provides information on weldabilily of uncoated steels and zinc-coated steels, as well as aluminum alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001462
EISBN: 978-1-62708-173-3
Abstract
Thermal spray coatings (TSCs) are surface coatings engineered to provide wear-, erosion-, abrasion-, and corrosion-resistant coatings for original equipment manufacture and for the repair and upgrading of in-service equipment. This article presents an overview of five thermal spray processes and the specific flame and arc spray processes used to preserve large steel components and structures. It describes the TSC selection guide and an industrial process procedure guide for applying aluminum and zinc TSCs onto steel.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001012
EISBN: 978-1-62708-161-0
Abstract
Steel sheet is often coated in coil form prior to fabrication to save time, reduce production costs, and streamline operations. This article examines the most common precoating methods and provides a metallurgical understanding of how they impact the manufacturability, performance, and service life of the host material. The article covers metallic coatings, including zinc, aluminum, zinc-aluminum alloys, tin, and terne; pretreatment or phosphate coatings; and preprimed and painted finishes based on organic coatings.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001077
EISBN: 978-1-62708-162-7
Abstract
This article describes the zinc and zinc alloys for decorative and functional applications. It focuses on the types of zinc coatings, namely, hot dip galvanizing, electrogalvanizing, metallizing, and mechanical galvanizing. The article covers the uses of zinc alloy castings, including pressure die castings, and gravity castings. It details the wrought products of zinc and zinc alloys, including flat-rolled products, wire-drawn products, extruded products, and forged products. The article also describes various properties of zinc alloys, including mechanical, thermal, electrical, chemical, and magnetic properties. The listing for each alloy includes chemical compositions, relevant specifications, mass characteristics, and fabrication characteristics.